@ 9 CONTROL DATA
CORPORATION

60435400

NOS VERSION 1
REFERENCE MANUAL

Volume 1 of 2

CDC® COMPUTER SYSTEMS:

CYBER 170 SERIES
CYBER 70

MODELS 71, 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION
A Manual released. This manual reflects NOS 1.0 at PSR level 404.
(06-17-75) '
B Revised to reflect NOS 1.1 at PSR level 419. New features include support of memory increments
(03-08-786) to 262K on CDC CYBER 170 Series Systems, 844-41 Disk Storage Subsystem, multi-
mainframe, additional security control, the Text Editor utility, and BASIC version 3. Other
additions include: description of reserved file names in section 2, new error messages, and new
parameters on the BLANK, CONVERT, DAYFILE, ENQUIRE, FTN, LDI, L072, and SUMMARY
statements. Section 4 has been reorganized to more accurately describe the system control
language. In addition, the description of OPLEDIT usage has been removed from section 14 and is
included in the Modify Reference Manual. The entire description of the FAMILY and SYSEDIT
statements has been removed from section 14 and is included in the NOS Installation Handbook.
This edition obsoletes all previous editions.
C Revised to reflect NOS 1.2 at PSR level 439. New features include revised field length control,
(12-<03-78) added security for the CHANGE and PASSWOR control statements, queued file management,
security count, SRU limit control, and additional parameters for the LIMITS statement. The
parameters for the COBOL 5 statement have been added to the product set descriptions. Four new
control statements are described: MFL, RCUTE, SETASL, and SETJSL. New examples are
included for creating multifiles on tape and using LIBEDIT, Technical and literary corrections
have been made.
D Revised to reflect NOS 1.2 at PSR level 452 and to make typographical and technical corrections.
(07-15-77) The revision includes the TCOPY control statement, extensions to the COPY and VERIFY control
statements, and support of the CDC CYBER 171 computer system. In addition, the error messages
in appendix B have been reformatted.
E Revised to reflect NOS 1.2 at PSR level 460 and to make literary and technical corrections.
(11-21-77)
F Revised to reflect NOS 1.3 at PSR level 472. This revision adds descriptions of the following
(05-26-78) new control statements: BEGIN, DMDECS, DMPECS, ENTER, NOTE, and PROTECT. The V
carriage control character for programmable format is outlined. The new CDC CYBER Control
Language is presented with extensive use of examples. Section 11, Product Set Control Statements,
was deleted. The product set control statement formats are given in the NOS Application Pro-
grammer's Instant. This edition obsoletes all previous editions.
G Revised to reflect NOS 1.3 at PSR level 477 and to make literary and technical corrections.
(08~25-78)
H Revised to reflect NOS 1.3 at PSR level 485 and to correct literary and technical errors.
(12-22-78)

[Publication No.

60435400

REVISION LETTERS |, 0, @ AND X ARE NOT USED

© 1975, 1976, 1977, 1978, 1979
by Control Data Corporation

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue

St. Paul, Minnesota 55112

or use Comment Sheet in the back of

Printed in the United States of America this manual,

ii

REVISION RECORD (CONT'D)

REVISION DESCRIPTION

J Revised to reflect NOS 1.4. New features in this release include CDC CYBER 170 model 176 and

(08-10-79) | 885 disk support; the FCOPY, HTIME, and TRMDEF control statements; and the 12-bit ASCII

code set. This revision contains a new section 14, Library Maintenance and a2 new appendix I,

Line Printer Carriage Control. This edition obsoletes all previous editions.

Publication No,
60435400

ii-a/ii-b

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

> . .

% e Rl R e e e T T e e el R e e e e e e R e e e R R R N e R N R R R R R Y

w

= O~ MWDo oM O NMHIDWE00DD =M DO -

< - DA vt v A Al A NN OO = =S NN HUDWE= 0 vl vt v v rd v v w1 T CAICI NI NN ON o - 901

Q. N I Y e e e e R R R N NN e B HEC T U c Sl) 1.
NNNNNNNNNNMNOONMOOOMMOMOMPE TP HII I IS IS BRI P11
B B B I R IR B B B B B R B B e R R B R R e s B T IRV I P PR PR T I = I 1R i RS o o <t}
[D R N Y S A T DO I T Y A N N R DO DU N I D DY NN N D U NN D S DU D D N D DO T DN N T JR DU A U T N U D SN N SN DN DN N U DR RN DR DN DN DA
R I I I I R R R R R I e I I R R I R R e I e R R e I R I R e I R e I I A I I R R I I I I I R e R R R R R |

>

A L L L E R L L L L L L L L e b e L e L R L R L T e e e N T e T

O NMSPINOWI~-OD O
MO OQOwiNMPWOWI~00DNDO O IH LD WOE~ 00 O vt v vl vl vl = vt o vt (N = O] O v OO D WD
PR HID 1 N HFD O~ OD vt v v vt vl A A A N DHWW 4 bt byt
P sttt OO0 0000000000000 OO0OO TN HHHANNMNNCN
v~~~ 00000NNAMWAMMWCAVOVVDVBVDVDDVDDONDANOO O vl vl vl i vd vt v v v vt vl vl v v v o v v v o v v v ot v]
LS T e T T T T A T T T T e e T L T e T T T L L L L O T L T O N T T T O T T O O T T T T S S R T T I T A O T I '}
L R I B I R R R I I e R e I e I I e R R R R R e e R R i B I I I I e R R R e R R R R R R R R R RN R R R]

REV ‘ PAGE

I R B R R R R R R R B R o N R B N B M B B R M B B M B W B Mar B Mo B - W B B W W W N W B B B R e N W B M B N N R R W W W N W]

w

Q

NN WE~0 DO M D O NMPANOTONONNHNO~ONO—NNMPICWE 00D M DO

AN NNMNEMMNNMNMMMO M N H LU O D000 rm vl vl vd vl red el el H N NNNNNNNANNGOMOMMOMNOMN OO < i
U L A R O N O R OO OO R O N N O e O e R B B e
W W WWWWWWWWWWWE=D= =D~~~ Db~ P~ e~ Db~ D~ Do b0~ 0 D D DD~ D= D~ b= [~ D [0~ b b= = [D= D= D b~ [~ DD~
LU T S N I S N U D U DN U T DR S U R A D R I N RN DU N N U U U U U N J S NN TN T TN N TN N N S U TN NN N DY NN NN U T TN N DR TR NN TN A)
L I e B I e B R I B A R e R e I e I e B B I I e B I e B B e e B A I e I e B B A I I I A R R e R I I I I e I I I I e I e I I I I I B B)

>

% R e N T T Ty A e e e e e Rl A T A A A e H e R L W e e e e O e e e N N e e e W W R T c P e s e e

g

8

O NN IOV ENNHINOE-ODOANNINO-0DNO OrHEMNMEIN WOL-00 0O —

Aot A A A A A NN NENANNENENANNMOMMOMOMOM M = 00U D 00— M H DW= D vt vl vt ol ol et O O
NN R
SH oo o o o o o o o s o o o i o S LD LD 1) D LD D D 1) (D (O O O D O (D (O (O D D D D D D D O W W W W
LR L A T T O T T T T T O T T T T T I e T T e T T T T A T R R e A R T e A T e T A R T T A A T A T T]
L B R Rl R e e B e I e I e R B B I e I B R B B A e e B A e B e B I e R e e R R I R R R I e I e B I R I I I R I e R I R R I R e R]

> .

E 1 L N e N e e e R R N N N e e e N B N e N e N N e R e e e e e N e N N e e N e N N R R e el N e e N N R e R e A
4 8
& 5o

w o O bo o)

Gllo=88 -

-3 O g .~ O-Nm (=Xl

alle ae Kad v O D P D O et O) P U KO B 00 OD vt vt vt vt v O O < LD O B~ 00 O v i (N 0D D O B~ 00 O
5848 3 L bk L
g 85 -t ot - s o e e NN NNNNNNMNMMMMMOOM O P
L R I BN .~ be B PR e e B o LR R R R R R R N T N S I T R N S T S S M M S U U S A SR AR -
FC T.l.lllVVVVlXXXXXX R R I R R R I R R I R I e R I I I B I I I B I e I T B I T T R L R v [G i g

iii

60435400 J

>
w
o«
w
(L]
s
a
>
w
[: 4
w
O
<
a
V__
w
[+ 4
w
[}
S
o
ﬂ JJJJJJJJJJJJJAEAJECAAAAJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJUJJJJ =
[+ 4
1
Q
= b
w OHNMMNO L g
= Soan 2% PR A AOAOMARRSOS-ETL
b o XY= o 1 O b~ O o o 5678911
o Q.u....“....;n%ﬂu.._..ﬂ.nﬁud... PN YTT N .nw.d..ﬂ.ﬂ...‘. DRI RO .123A.=.uc.uuﬂwmHﬁuﬂﬁwﬂa“ﬂuuumwk
A AR A A AR e R R R F
bh_hbbllllllllllllllllll — e .111111111llllllvmmmvmmm.m.m.mmvmmmmmmc m
>
—h R R e R e R Nl e e N e N N N N e N N R N e e e N e e N N e R N e R e Y e e R e N N N N e R e e e e N N e N S Y N &
E—
Ol O NIV ONOANNHINOWEONOHNNNHINO-ONO—ANMHWOONO - MM HIDWOE 00D
Do Bl B A A R L AR A S E R I B I R S S G A S Akl i
sedhndahddhhanhadddddddanhidnadddhhdddddadhdddhddaddddhdddddhdood000an
]]

60435400 J

iv

PREFACE

This manual describes the Network Operating System (NOS) version 1.4. NOS controls the
operation of CcDC® CYBER 170 Series; CDC CYBER 70 Series, models 71, 72, 73, and 7%;
and CDC 8000 Series Computer Systems.

ORGANIZATION

The NOS Reference Manual is contained in two volumes to separate information useful only
to the COMPASS programmer from information useful to all NOS users.

Volume 1 contains information for all NOS users. This includes a general description of
the system and its handling of files and jobs, detailed descriptions of control language and
control statement formats and processing, and explanations of memory dumps and other
debugging aids. Appendixes contain NOS character sets, messages, and a glossary.

Volume 2 contains information of use primarily to the COMPASS programmer; howevef,
several sections contain information for users of higher level languages. For reference,
the table of contents of volume 2 follows the table of contents of this volume.

CONVENTIONS

Throughout this manual, cross-references to the NOS Reference Manual, volume 2, are
in the form: refer to section (or appendix) n, volume 2. If volume 2 is not stipulated, the
reference is to volume 1.

Uppercase letters within statement formats should be entered exactly as given; lowercase
letters should be replaced with appropriate characters as described after the format.

Extended memory for the CDC CYBER 170 models 171, 172, 173, 174, 175, 720, 730, 750,
and 760 is extended core storage (ECS). Extended memory for CDC CYBER 170 model 176
is large central memory (LCM) or large central memory extended (LCME). ECS and LCM/
LCME are functionally equivalent, except as follows: :

e LCM/LCME cannot link mainframes and cannot use a distributive data path (DDP).

e LLCM/LCME transfer errors initiate an error exit, not a half exit. Refer to the
COMPASS Reference Manual for complete information.

Model 176 supports direct LCM/LCME transfer COMPASS instructions (octal codes 014

and 015}, Refer to the COMPASS Reference Manunal for complete information,

Vil NoAUlvid LAl awwaTa T

In this manual, ECS refers to all forms of extended memory on the CDC CYBER 170 Series.
However, the model 176 extended memory is excluded in references to ECS access through
the DDP and to multimainframe ECS linkage.

60435400 J v

AUDIENCE

‘This manual is written for all NOS users. Users can understand the manual contents
without knowing the NOS assembler language, COMPASS. However, they should read the
NOS 1 Batch User's Guide and/or the Network Products IAF User's Guide or the NOS 1
Time-Sharing User's Guide before reading this manual.

Users are urged to consult the glossary in appendix C for definitions of terms used in this
manual.

RELATED PUBLICATIONS

Information on NOS system operation, the NOS product set, and time-sharing commands
is given in the following listed manuals. Separate manuals describe CDC CYBER Record
Manager and CDC CYBER Loader. The NOS Applications Programmer's Instant contains
a list of the product control statements and their parameters. The Manual Abstracts
booklet for NOS gives a short description of the contents of the following manuals. Refer
to the Literature Distribution Services catalog for the latest revision levels.

Control Data Publication Publication Number
ALGOL Version 4 Reference Manual 60496600
ALGOL Version 5 Reference Manual 60481600
APEX III Version 1 Reference Manual 76070000
APL Version 2 Reference Manual 60454000
Application Installation Handbook 76071100
APT IV Version 2 Reference Manual 17326900
BASIC Version 3 Reference Manual 19983900
CDCS Version 1 Reference Manual 60498700
COBOL Version 4 Reference Manual 60496800
COBOL Version 5 Reference Manual 60497100
Common Utilities Reference Manual 60495600
COMPASS Version 3 Reference Manual 60492600
CYBER Interactive Debug Reference Manual 60481400
CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual 60499300
CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual 60495700
CYBER Loader Version 1 Reference Manual 60429800
CYBER 170 Computer Systems Models 720, 730, 750, 760, and
176 (Level B) Hardware Reference Manual 60456100
CYBER 170 Computer Systems Reference Manual 60420000
CYBER 70/Model 71 Computer System Reference Manual 60453300
CYBER 70/Model 72 Computer System Reference Manual 60347000
CYBER 70/Model 73 Computer System Reference Manual 60347200
CYBER 70/Model 74 Computer System Reference Manual 60347400

vi 60435400 J

L

-

by

6043

Control Data Publication

Data Base Utilities Version 1 Reference Manual
Data Catalogue 2 Reference Manual

DDI. Version 1 Reference Manual

DDL Version 2 Reference Manual

FORM Version 1 Reference Manual

FORTRAN Extended Version 4 Reference Manual
FORTRAN Version 5 Reference Manual

FORTRAN 4 to 5 Conversion Aids Reference Manual
GPSS V/6000 Version 1 General Information Manual
LCGT/IGS Version 1 Reference Manual

Math Science Library Version 1 Reference Manual
Manual Abstracts

Modify Reference Manual

Modify Instant

Network Products Interactive Facility Version 1
Reference Manual

Network Products Interactive Facility Version 1 User's Guide

Network Products Network Access Method Version 1
Network Definition Language Reference Manual

Network Products Network Access Method Version 1
Reference Manual

Network Products Network Terminal User's Instant

Network Products Remote Batch Facility Version 1
Reference Manual

Network Products Stimulator Version 1 Reference Manual

Network Products Transaction Facility Version 1
CRM Data Manager Reference Manual

Network Products Transaction Facility Version 1
Data Manager Reference Manual

Network Products Transaction Facility Version 1
Reference Manual

Network Products Transaction Facility Version 1
User's Guide

Network Products 2550 Communications Control Program
Version 3 Diagnostic Operator Handbook

Network Products 2550 Communications Control Program
Version 3 Reference Manual

NOS Version 1 Applications Programmer's Instant
NOS Version 1 Batch User's Guide

NOS Version 1 Diagnostic Index

NOS Version 1 Export/Import Reference Manual

5400 J

Publication Number

60498800
60456710
60359000
60498400
60496200
60497800
60481300
60483000
84003900
17322800
60327500
84000420
60450100
60450200

60455250
60455260

60480000

60499500
60455270

60499600
60480500

60456710

60455350

60455340

60455360

60471500

60471400
60436000
60436300
60455720
60436200

vii

Control Data Publication

NOS Version 1 Installation Handbook

NOS Version 1 Operator's Guide

NOS Version 1 System Maintenance Reference Manual
NOS Version 1 System Programmer's Instant

NOS Version 1 Reference Manual, Volume 2

NOS Version 1 Terminal User's Instant

NOS Version 1 Time-Sharing User's Guide

NOS Version 1 Time-Sharing User's Reference Manual
On-Line Maintenance Software Reference Manual
PERT/Time Version 1 Reference Manual

PL/I Reference Manual

Query Update Version 2 Reference Manual
Query Update Version 3 Reference Manual
SIMSCRIPT Version 3 Reference Manual
SIMULA Version 1 Reference Manual
Sort/Merge Versions 4 and 1 Reference Manual

SYMPL Version 1 Reference Manual

TAF/TS Version 1 CRM Data Manager Reference Manual

TAF/TS Version 1 Data Manager Reference Manual
TAF /TS Version 1 Reference Manual

TAF/TS Version 1 User's Guide

Text Editor Reference Manual

Total Universal Version 1 Reference Manual

Update Reference Manual

XEDIT Version 3 Reference Manual

8-Bit Subroutines Version 1 Reference Manual
6400/6500/6600 Computer Systems Reference Manual

DISCLAIMER

This product is intended for use only as described in this document.

Publication Number

60435700
60435600
60455380
60449200
60445300
60435800
60436400
60435500
60454200
60133600
60388100

an294a0n

VUJIUITIvuY

60498300
60358500
60234800
60497500
60496400
60456700
60453100
60453000
60436500
60436100
76070300
60449900
60455730
60495500
60100000

Control Data cannot

be responsible for the proper functioning of undescribed features or undefined parameters.

viii

60435400 J

CONTENTS

SECTION 1 SYSTEM DESCRIPTION
System Hardware
Central Processor Unit
Central Memory
Control Points
Central Memory Resident
Extended Memory)
Peripheral Processors
Peripheral Equipment
System Software
User Programs
Operating System
CYBER Loader
CYBER Record Manager

SECTION 2 FILES
File Names
File Structure
CYBER Record Manager File Structure
NOS File Structure
Physical File Structure
Card Files
Mass Storage Files
Magnetic Tape Files
File Types
Files Assigned to User Jobs
Input Files
Print Files
Punch Files
Local Files
Primary Files
Direct Access Files
Library Files
Rollout Files
Timed/Event Rollout Files
Permanent Files
Indirect Access Permanent Files
Direct Access Permanent Files
Mass Storage File Residence
Family Devices
Auxiliary Devices
Libraries
User Number LIBRARY
Program Libraries
User Libraries

60435400 J

[

L R T S o g W W
[I N)

DN O R W RN BN N

bk et fod bk ek fed b fed b bk fed b et b

U U U L U I R R N e)
L e N R R L s T T T e D U N B |

NDMNMNNNDNDNNNNDNDNNNNNNDNDNNNNNMNDNMNMNNDN NN NN

bbb b b b e e e b b b e e e e (O GO 00 00 00 UV i BN DD DN s et

BB WWWWNNNN =R OO00O0

e et e et e T o S o e R o S S iy S S gy WP PRy P WP
U |
[2 |

SECTION 3

SECTION 4

JOB FLOW AND EXECUTION
Job Initiation

Job Origin Types

Job Names

System Origin Type (SYOT) Job Name Format
Batch Origin Type (BCOT) Job Name Format
Time-Sharing and Remote Batch (TXOT and EIOT)

Job Name Format

Validation

Accounting

Job Scheduling

Job Control
Field Length Control
Input File Control
Time Limit Control
SRU Limit Control
Control Statement Limit Control
Rollout Control
Error Conirol
Security Control

Job Completion

CDC CYBER CONTROL LANGUAGE

Introduction
Expressions
Operators’
Arithmetic Operators
Relational Operators
Logical Operators
Order of Evaluation
Operands
Integer Constants
Symbolic Names
Conditional Statements
SKIP Statement
ENDIF Statement
IFE Statement
ELSE Statement
Iterative Statements (WHILE and ENDW)
Additional CCL Statements
SET Statement
DISPLAY Statement
Functions
FILE Function
DT Function
NUM Function
SS Function
Procedures
Structure of a Procedure
Procedure Header Statement
Procedure Body
Procedure Commands
.DATA Command
. EOR Command
. EOF Command
. % Command
Procedure Call and Exit
BEGIN Statement

LU R
L U |

bbb pd o et b
]

] | D P I A L S D)

b i b B R B R R R R R R R B R B B R B R R R R R R R R R RO OO RWRRWNW WL WW
] [2 D O I I |

HOWOCO~T-IJ~TU N AW GO LWL st b

bbbt b b bk b bk e e b et b ek
)

| N R RO R R T T N B N D I D R R R S R R |
[R N R N U U N N Y N J N R B I S SN R |

[}
NNONNNNDNNDNNDNNDNDN I 2 = OO0 0031000 b s b 000

VOOV ION i = O 0000 -3 N~

| A R T R R I Y D D R R B B |
U LU U U UL L |

bbb ek et b bk b ek e ek bbb b ped el el el ek b b b b b bt e bed bbbl b et e b b e
[
U

60435400 J

SECTION 5

SECTION 8

60435400 J

REVERT Statement
Keyword Substitution

CONTROL STATEMENT PROCESSING
Control Statement Format

Job Statement (Job Card)

Control Statement Processing Flow
Exit Processing

JOB CONTROL CONTROL STATEMENTS
ACCOUNT Statement
CHARGE Statement
COMMENT Statement
CTIME Statement
DAYFILE Statement
ENQUIRE Statement
ENTER Statement
EXIT Statement
HTIME Statement
L.DI Statement
LENGTH Statement
LIMITS Statement
MFL Statement
MODE Statement
NOEXIT Statement
NORERUN Statement
NOTE Statement
OFFSW Statement
ONEXIT Statement
ONSW Statement
PASSWOR Statement
PROTECT Statement
RERUN Statement
RESOURC Statement

Deadlock Prevention
Single Resource Use
Tape Units
Resource Overcommitment
Altering Resource Regquirements
Unit Assignment
RFIL Statement
ROLLOUT Statement
RTIME Statement
SETASIL Statement
SETCORE Statement
SETJSL Statement
SETPR Statement
SETTIL Statement
STIME Statement
SUBMIT Statement
SUI Statement
SUMMARY Statement
SWITCH Statement
USECPU Statement
USER Statement

[argyen
] [} [|
1N

t 1
ww

oW

i e
'
U‘UI?U‘!UI
00O i = =

ot
NN DOIDHIIDOIND
L L L U | i

]
= bt e et e (O O 00 00 =T +h W W W NN

bt oo r ey
DO NNNODOINDD
U LR R LR R N A S D S NN AN NN R N B N N T I | '

]
U

oo 1o
U U USSR USIU
WWWWWNNDNNDNDNNDNDNDDNDDNDDN NN N DN s et bt ek b b b b

el il I e e e e e e e e e e e e S e e S el o T g g iy S U i S P gy S Sy S S S U VPR WP Y
[]

R WWNNI-IJ-1OON R PBRRWNNHOODOOINRIIMO R WNO

SECTION 7

SECTION 8

o xii

FILE MANAGEMENT CONTROL STATEMENTS

ASSIGN Statement
BKSP Statement
CLEAR Statement
COMMON Statement
CONVERT Statement
COPY Statement

Copy Termination

Block Sizes

Processing Options
COPYBF Statement
COPYBR Statement
COPYCPF Statement
COPYCR Statement
COPYEI Statement
COPYSBF Statement
COPYX Statement
DISPOSE Statement

™M) Ao de o e b
DOCMENT Statement

EVICT Statement
FCOPY Statement
LIST80 Statement
LOCK Statement
L.O72 Statement
NEW Statement
OUT Statement
PACK Statement
PRIMARY Statement
RENAME Statement
REQUEST Statement
RESEQ Statement
RETURN Statement
REWIND Statement
ROUTE Statement
SETID Statement
SKIPEI Statement
SKIPF Statement
SKIPFB Statement
SKIPR Statement
SORT Statement
TCOPY Statement
TDUMP Statement
UNLOAD Statement
UNLOCK Statement
VERIFY Statement
WRITEF Statement
WRITER Statement

PERMANENT FILE CONTROL STATEMENTS

APPEND Statement
ATTACH Statement
CATLIST Statement
CHANGE Statement
DEFINE Statement
GET Statement

OLD Statement
PACKNAM Statement
PERMIT Statement

LI T O R I I N B |
LI I Y | | I T |

1
b e e O O e i GO BN

CONNUBROVORRP-TIWWNOCODO-I-TNOWNRROOWRTIRN NN OO

] | J I T S N N B}
1 1t UL L R I A |
Gt B B B R WL WWWWWWWWRNDNNMIDN DN DD DN D et b

ot b s b b b b b b bt b b e b b e et bl bbbl ek bk b b b bk bl bt b b b b bt b b e el b e fed ek b b et e
(O T T T T T T T T T T T T TR TR T T T T | 1

-Jqqqﬂ«l-l-q-a-lq-a«1qqqqqqq-'ﬂqqqqqqq-quqqqqqﬂqqqq-q—ld-qqﬂ
R R R) DU)

e ol el N ey
1

60435400 J

SECTION 8

SECTION 10

SECTION 11

SECTION 12

SECTION 13

60435400 J

PURGALL Statement
PURGE Statement
REPIACE Statement
SAVE Statement
Error Conditions

LOAD/DUMP CENTRAL MEMORY UTILITY CONTROL

STATEMENTS
DMP Statement
DMD Statement
DMPECS Statement
DMDECS Statement
LBC Statement
LOC Statement
PBC Statement
RBR Statement
WBR Statement

TAPE MANAGEMENT
Tape Assignment
Control Statement Rules
Processing Options
ASSIGN Statement
BLANK Statement
LLABEL Statement
LISTLB Statement
‘REQUEST Statement
VSN Statement

CHECKPOINT /RESTART
CKP Statement
RESTART Statement

DEBUGGING AIDS

Central Memory Dumps
Exchange Package Dumps

Generating Meaningful Dumps

Reading CM Dumps

‘SYSTEM UTILITY CONTROL STATEMENTS
EDIT Statement

KRONREF Statement

MODIFY Statement

OPLEDIT Statement

PROFILE Statement

UPDATE Statement

UPMOD Statement

XEDIT Statement

LIBRARY MAINTENANCE
File Access Methods
Library Record Types
CATALOG Statement
GTR Statement
LIBEDIT Statement
Control Statement Format .
LIBEDIT Directives
Directive Syntax

b bbb b bt ek ek el el fed
[

D O D O O D O P O ©
'

1
D OO R WO DN

o

xiii

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I

bt e b ek e e b
]

b b B R G DN DN
]

[A | {
| I |
N s QO DN DN e

Xiv

ADD
BEFORE
BUILD
COMMENT
COPY
DATE
DELETE
FILE
IGNORE
INSERT or AFTER
NOREP
RENAME
REPLACE
REWIND
TYPE or NAME
LIBEDIT Output
LIBGEN Statement
VFYLIB Statement
Library Processing Examples

APPENDIXES

CHARACTER SETS

MESSAGES

GLOSSARY

SAMPLE JOB OUTPUT
TIME-SHARING INTERFACE

CARD FILE DATA CONVERSION
ANSI TAPE LABEL FORMATS
CONTROL LANGUAGE (KCL)

LINE PRINTER CARRIAGE CONTROL

INDEX

FIGURES

Central Memory Allocation

Sample Card File Structure

Use of ANSI Labels

FORTRAN Compile and Execute Deck
Procedure Access of a Data Record

Data File Written from a Procedure on a Named File

Calling a Procedure from a Job

Calling a Procedure from Another Procedure
Keyword Substitution in Two Procedures

1-14-12
1-14-13
1-14-13
1-14-13
1-14-14
1-14-14
1-14-14
1-14-15
1-14-15
1-14-15
1-14-16
1-14-16
1-14-16
1-14-17
1-14-17
1-14-18
1-14-19
1-14-20
1-14-22

1-A-1
1-B-1
1-C-1
1-D-1
1-E-1
1-F-1
1-G-1
1-H-1
1-I-1

o W GO DD I
U
MR WWNDNDND OO & W

Pt b b et b (e e e
OO O O

80435400 J

LI B | LI R I I |
'
[| | I R T B)

e i e e e
'
el el el el el el el el 2R 9]

DNNNNDNNDDNDDND DN
'
ORI U i WN =

1-12-10
1-12-11
1-14-1
1-14-2
1-14-3

SECTION 1
SECTION 2
SECTION 3
SECTION 4
SECTION 5
SECTION 6
SECTION 7
SECTION 8
SECTION 9
SECTION 10

SECTION 11

60435400 J

Control Statement Processing Flow

Resource Commitment Processing (Simplified)
Exchange Package Dump

Exchange Package Dump for CYBER 170 Model 176
Main Program of Main Overlay (0, 0)

Function Subroutine of Main Overlay (0, 0)
Subroutine of Main Overlay (0, 0)

Main Program of Primary Overlay (1, 0)
Loader Map of Main Overlay (0, 0)

Loader Map of Primary Overlay (1, 0)
Program Output

Exchange Package Dump

Central Memory Dump

Random Access File Structure

LIBEDIT Input and Output

User Library Structure

TABLES

Physical File Structure on Storage Devices

Logical Structure of Supported Mass Storage Devices

Symbolic Names with Arithmetic Values

Alterations of Parameters in a Procedure Body by Use of

sand -

Basic Substitutions in a Procedure
Keyword Substitution in Positional Mode
Keyword Substitution in Equivalence Mode

Range of Permissible Formats for the COPY Statement
Compatible File Structures for the VERIFY Statement

Combinations of Multiple Access
Permanent File Error Conditions

VOLUME 2

. PROGRAM/SYSTEM COMMUNICATION

FILE ENVIRONMENT TABLE (FET)
INPUT/OUTPUT

LOCAL FILE MANAGER
PERMANENT FILE MANAGER
CONTROL POINT MANAGER
QUEUE FILE MANAGER

FILE ROUTING

SYSTEM FILE MANAGER

JOB CONTROL |
SYSTEM/LOADER REQUESTS

[eoBE IS =2}

]
1

J

00 00 =3 ~3 s> b i o -\
1

Nk hWwWwwwiy oW

©

bk fod ok e ok b b et

o

Xv

SECTION 12

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

APPENDIX H

APPENDIX I
APPENDIX J

Xvi

PROGRAM WRITING TECHNIQUES

APPENDIXES
CPU COMMON DECKS
MESSAGES
GLOSSARY
INTERPRETIVE MODE READING AND WRITING OF ECS
SPECIAL USER INFORMATION
SPECIAL ENTRY POINTS

EXAMPLES OF RANDOM 1/0
PROGRAMMING STANDARDS
MAGNETIC TAPE FORMATS

2-12-1

2-A-1
2-B-1
2-C-1
2-D-1
2-E-1
2-F-1
2-G-1
2-H-1
2-1-1

2-J-1

60435400 J

SYSTEM DESCRIPTION 1

NOS is capable of several concurrent processing modes. The following are the available
processing modes.

¢ Local batch.

e Remote batch.

] Transaction.

. Time-sharing.
The network processing modes (remote batch, transaction, and time-sharing) operate
through the Network Access Methods (NAM) communications software. THeE processing

modes are implemented, respectively, by the following NAM applications: Remote Batch
Facility (RBF), Transaction Facility (TAF), and Interactive Facility (IAF).

NOS can also perform time-sharing and transaction processing through the time-sharing
-executive and remote batch processing through Export/Import.

The primary emphasis of this manual is on local batch processing. Users of the other
processing modes should consult the appropriate manual listed in the preface.

NOS, like all operating systems, is the interface between user software and the capabilities
of system hardware components. The remainder of this section describes the hardware and
software that make up a NOS-controlled computer system. In most cases, the user of this
manual need not understand the operation of system hardware or the internal operation of

system software. This manual describes these topics only as general background for
understanding NOS control statements.

SYSTEM HARDWARE
NOS can operate within the CDC CYBER 170 Series; CDC CYBER 70 Series, Models 71, 72,
73, and 74; and 6000 Series Computer Systems. The primary hardware components of each
system are the following.

° Central processor unit.

e Central memory.

e Extended memory.

e Peripheral processors.

e Peripheral equipment.

60435400 J 1-1-1

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) executes instructions and manipulates and stores data
retrieved from central memory. The number of CPUs within a mainframe and their type
varies with the machine model. As a result, some models can execute additional COMPASS
assembler instructions (refer to the COMPASS Reference Manual). These model differences
do not affect applications written in higher level languages. :

CDC CYBER 170 and CDC CYBER 70 Series Computer Systems have the central exchange
jump/monitor exchange jump (CEJ/MEJ) feature. This feature enables the system to
switch CPU control between the system monitor and other programs. The information
transferred from the CPU to central memory by an exchange jump operation is called an
exchange package. Section 12 describes the format and use of an exchange package dump.

CENTRAL MEMORY
The primary functions of central memory (CM) are:
e To buffer data to and from the peripheral processors.

. To transfer instructions and data to and from the CPU.

Control Points

Several jobs can reside in CM simultaneously. To separate and control each job while it is
resident in CM, the system assigns it to a control point. The control point is assigned a
starting CM address (its reference address or RA) and allocated an initial field length (the
CM words in which the job is executed). The field length is adjusted during job execution
as described in section 3. Figure 1-1-1 shows a job field length within CM.

A reference to an address outside the control point address range causes a hardware error
condition and job termination. ‘

NOS supports up to 23 simultaneous control points. The maximum field length depends on
the CM size and installation parameters used to control memory usage. The system assigns
the CPU to control points requiring CPU activity. Rapid switching of CPU control between
control points enables jobs to execute concurrently. The exact amount of time allowed for
each control point depends on system activity and system parameter settings. Thus, the
time required to complete a job may vary, although the actual CPU execution time is the
same.

When a job completes, aborts, or rolls out (that is, its execution is suspended), the conirol
point is released and made available to another job. '

o 1-1-2 60435400 J

CENTRAL

MEMORY
CENTRAL
MEMORY
RESIDENT
ABSOLUTE REFERENCE - - -
ADDRESS ADDRESS (p)
USER FIELD
RA +p 0<p<FL }upp LENGTH
Jo8 (FL)
RA + FL . -— e o= o
L

™

Figure 1-1-1. Central Memory Allocation

Ceniral Memory Resident

The portion of CM reserved for system use is called central memory resident (CMR). It .
contains system tables, directories, and the CM portion of the system monitor (CPUMTR).
Because its RA is always address 0 and its field length (FL) is the size of central memory,
CMR can access any CM address and therefore specify addresses for CPU exchange jumps

that switch CPU control between control points.

EXTENDED MEMORY

Extended memory (EM) is available as large central memory (LCM) or large central
memory extended (LCME) on the CYBER 170 model 176 or as extended core storage (ECS)
on other NOS systems. References to ECS in this manual refer to ECS, LCM, and LCME
unless otherwise noted.

Slower than CM, but faster than mass storage, EM can be used for the following purposes.
e As a directly accessible memory device via FORTRAN or COMPASS statements
for ECS data storage and retrieval. (Refer to the FORTRAN Extended 4 Reference
Manual, FORTRAN 5 Reference Manual, or appendix D of volume 2.)

As storage for frequeniiy accessed data. Refer to the ASSIGN statement in section
7 and Permanent File Control Statements in section 8.

e As an alternate system device for storing copies of frequently used routines.
® As a link between mainframes in a multimainframe configuration.

Only validated users can use EM (refer to the LIMITS statement in section 6).

T CYBER 170 model 176 extended memory cannot link mainframes.

60435400 J 1-1-3

PERIPHERAL PROCESSORS
The peripheral processors (PPs) process communications between CM and individual
peripheral devices. They also perform those system control functions that are better
handled by a PP than by the central processor. A peripheral processor can:

e Read and write CM.

e Read axi_xd write ECS indirectly via CM or directly via the distributive data path
(DDP).

e Transfer data to and from peripheral devices through the data channels.
NOS supports the 7, 8, 9, 10, and 20 PP configurations for 6000 series computers and 10,
14, 17, and 20 PP configurations for CDC CYBER 70 models 71, 72, 73, and 74. NOS
also supports 10, 14, 17, and 20 PP configurations for all CDC CYBER 170 models except
model 176. CYBER 170 model 176 has two types of peripheral processors, PPs and PPUs.
The configuration supported by NOS can have 2, 4, or 6 PPUs and from 10 to 20 PPs.

For further information on PPs, refer to the appropriate system hardware reference
manual listed in the preface.

PERIPHERAL EQUIPMENT
Peripheral equipment varies among installations but usually includes card readers and
punches, line printers, mass storage devices, and magnetic tape units. NOS supports
the following equipment models.

405 Card Reéader

415 Card Punch

580-12, 580-16, and 580-20 Line Printers

844-21 Disk Storage Subsystem

844-41 and 844-44 Disk Storage Subsystems

885 Disk Storage Subsystem

667, 669, 677, and 679 Magnetic Tape Units

6671 Multiplexers for communication with 200 User Terminals and 731-12, 732-12,
and 734 Remote Batch Terminals

6671 or 6676 Multiplexers for communication with interactive terminals

255x Network Processing Units

T This function does not apply to CYBER 170 model 176 peripheral processors.

1-1-4 60435400 J

SYSTEM SOFTWARE

Software executed within a computer system can be divided between software that is built
into the system during system initialization and software that executes as jobs within the
running system. Software present when the system begins running includes the operating
system and products such as compilers, CDC CYBER Loader, and CDC CYBER Record
Manager. Jobs run within the system are categorized according to their origin as described
in section 3. User jobs usually consist of user programs and the system instructions
required for program execution.

USER PROGRAMS

A user program is a group of CPU instructions defined by a user to perform a certain task
or calculate a result. A user program can be written in a language at any of three levels,

e Compiler languages provide the user with a language suited to his particular needs.
The program statements are translated by the appropriate compiler (FORTRAN,
COBOL, ALGOL, and so on) that generates assembler language or machine
language instructions. Programs written in compiler languages are usually
machine-independent.

e Assembler languages provide a one-to-one relationship between instructions and
machine operation. Mnemonics are provided for each instruction. These languages
are normally used by advanced programmers because they are machine-dependent.
Most of the NOS system is written in COMPASS, the assembler language of the
CDC CYBER 170, CDC CYBER 70, and 6000 series computers.

e Hardware instructions are interpreted directly by the computer, and therefore,
require no interpretation by a compiler or assembler, Each hardware instruction
is a binary number. The programmer is rarely concerned with instructions written

at this level. The exception is when program debugging requires that the user
interpret memory dumps.

OPERATING SYSTEM
NOS is a group of CPU and PP programs that supervise and coordinate the operation of
system hardware and the execution of products and user programs. The following lists
some of the functions of NOS.

e Job validation and accounting.

e Control statement translation.

e File retrieval, manipulation, routing, and storage.

e Job input and output.

e Normal and abnormal job termination.

e Memory dumps.

60435400 J 1-1-5

CYBER Loader

CYBER Loader prepares programs for execution. Following user directions, it allocates
memory for a program, loads the program modules into their appropriate locations,
generates a load map, and initiates program execution. It can load subdivided programs
for more efficient use of memory. Refer to the CYBER Loader Reference Manual for
more information.

CYBER Record Manager

CYBER Record Manager (CRM) is the interface between user I/O functions and NOS physical
1/0 functions. Some of the products that use CRM are COBOL 4, COBOL 5, FORTRAN
Extended 4, FORTRAN 5, Sort/Merge 4, ALGOL 4, ALGOL 5, PL/I, and DMS-170.

The functions of CRM are divided between two processors, Basic Access Methods (BAM)
and Advanced Access Methods (AAM). BAM handles sequential and word-addressable file
organizations; AAM handles indexed sequential, direct access, and actual key file organiza-
tions. Refer to the appropriate CYBER Record Manager manual listed in the preface.

1-1-8 60435400 J

FILES 2

A file is the largest collection of information addressable by name. All NOS data processing
involves operations performed on files. Files can be differentiated by their name, structure,
or file type or by whether they are assigned to a job (NOS jobs are described in section 3).

FILE NAMES

Each file has a unique 1 to 7 alphanumeric character name. T

Examples:
A 123 TAPE 1A2B COMPILE

Several file names are reserved for system use or have special significance to the system.
The following file names are reserved for use by system routines.

SCR SCR1 SCR2 SCR3 SCR4
Improper use of these file names produces the following dayfile message.

RESERVED FILE NAME,
Many NOS products such as COMPASS, FORTRAN Extended 4, and UPDATE use internal
‘'scratch files. Many of these scratch files have names beginning with ZZ. The user should

avoid using the name of a product scratch file for one of his own files,

The following file names are significant because they are associated with system input,
print, or punch queues or with time=-sharing terminals.,

INPUT OUTPUT PUNCH PUNCHB P8

Refer to the description of input, print, and punch file types for more information.

FILE STRUCTURE

File structure within 2 computer system has several meanings. Logical file structure is
how the user orders his data. He can define this logical file structure using higher-level
language statements within a source program. CRM translates the higher-level language
statements into the file structure that it superimposes on the data. NOS converts the NOS
file and record marks that structure a file while it is being processed within the system to
their physical tape, disk, or card equivalents when the file is stored.

t Some products such as FORTRAN Extended 4, FORTRAN 5, and COBOL 5 do not support
- file names that begin with a digit. Refer to the product reference manual for details.

60435400 J 1-2-1 e-

CYBER RECORD MANAGER FILE STRUCTURE

CYBER Record Manager handles input/output (I/0) for several products (refer to section 1)
including FORTRAN Extended 4, FORTRAN 5, and COBOL 5. CRM superimposes its file
structure on the NOS file structure. Through CRM, the user can specify a file organization,
a blocking type, and a record type for his data. The file organization determines how
records are accessed, the blocking type determines how CRM records are grouped on their
storage media, and the record type defines the smallest unit of data CRM can retrieve.

The user who wants to use CRM file functions directly should consult the CRM manuals listed
in the preface.

NOS FILE STRUCTURE

A NOS file can contain more than one logical file; if it does, it is called a multifile file.

- A multifile file begins at beginning-of-information (BOI) and ends at end-of-information
(EOCI). A file within a multifile file begins either at BOI or after the end-of-file (EOF) of the
preceding file. It ends at its EQF.

Each file consists of one or more records of information. A record is one or more 60-bit
CM words. A record begins at the BOI, after an EOF, or after the end-of-record (EOR) of

the preceding record. It ends at its EOR. The following is the structure of a single-record
file,

(BOI) data (EOR) (EOF) (EOI)
The following is the structure of a multirecord, multifile file.
(BOI) data (EOR) data (EOR) (EOF) data (EOR) data (EOR) (EOF) (EQI)

The last EOF in a file is optional.

PHYSICAL FILE STRUCTURE

When NOS stores a file, it converts it to a structure that conforms to the physical
characteristics of the storage medium. Its file and record marks are converted to physical
BOI, EOR, EOF, and EQI indicators.

The basis of all physical file structures is the physical record unit (PRU)}, the amount of

data that can be read or written in a single device access. Table 1-2-1 lists the PRU size,
and record and file mark indicators for each supported storage device.

1-2-2 60435400 J

TABLE 1-2-1.

PHYSICAL FILE STRUCTURE ON STORAGE DEVICES

Record and File Mark Indicators
Storage Device PRU Size BOIL EOR EOF EOI
Magnetic disk 64 CM words. Disk address PRU of less Zero-length Zero-length
or extended . for the file in than 64 words PRU (no data) | PRU with no
memory -~ EW7 the NOS file with a link to with special forward link.
[Lars name table the next PRU. link to next
e (FNT/FST). PRU.
Card decksT One card. First card in Card with a Card with Card with
the deck. 7/8/9 punch in | 6/7/9 punch in | 6/7/8/9 punch in
column 1. column 1.1t column 1.
Integral number | If unlabeled, A PRU of less Zero-liength Tape mark fol-
of CM words (0 | tape mark fol- | than 512 words | PRU whose lowed by an
I to 512); each lowing HDR1 with level num- { terminator EOF1 label.
(Internal) PRU includes a |label. If un- ber of 0. contains a
48-bit labeled, load ’ level number
terminator. point. of 178.
Integral number | If labeled, tape | A PRU of less Zero-length Tape mark fol-
of CM words (0 | mark following | than 512 words | PRU whose lowed by an
t SI to 512); each HDR1 label. with level num- | terminator EOF1 label.
(System PRU of less If unlabeled, ber between 0 contains a
internal) than 512 words | load point. and 168. level number
has a 48-bit of 17g.
terminator.
Magnetic Maximum of If labeled, tape | End of each Tape mark. If labeled, a
tapettT 512 words mark following | PRU. tape mark fol-
(refer to BS HDRI1 label. If lowed by an
S parameter on unlabeled, EOF1 label, If
(Stranger) COPY statement| load point. unlabeled, there
in section 7 and is no EOI
to appendix J in indicator.
volume 2).
No maximum If labeled, tape | End of each Tape mark. If labeled, a
defined (refer mark following | PRU. tape mark fol-
L to BS param-~ HDR1 label. lowed by an
(Long block eter on COPY If unlabeied, EOF1 label. 1f
stranger) statement in load point. unlabeled, there
section 7 and is no EOI
to appendix J indicator.
in volume 2),
Determined by | Load point. None. Tape mark. None.
C or FC para-
F Z:eéleé on
. SSIGN,
(Foreign) | | ABEL. or
REQUEST
statement.
1 For more information, refer to appendix F.
11 The EOF card is not recognized in & remote batch job.
T11 For more information, refer to section 10 and appendix G.

60435400 J 1-2-3 ©

Card Files

The physical file and record marks of a card file are shown in figure 1-2-1 and listed in
table 1-2-1, Although card decks do not have a defined PRU size, a card is the minimum
data unit. NOS can read and punch cards in coded (Hollerith), binary, and absolute binary
formats as described in appendix F. Coded cards are punched in 026 or O29 keypunch
mode. The system uses the installation default keypunch mode (chosen by the installation)
unless a 26 or 29 is punched in columns 79 and 80 of a job, EOR, or EOF card indicating
that the subsequent cards are punched in that mode.t NOS can punch up to 80 characters
on a coded card and up to 150 characters (15 CM words) on a binary card.

Figure 1-2-1. Sample Card File Structure

Mass Storage Files
Mass storage files are stored on disk or ECS.

The physical structure of mass storage does not concern most users; they interact with the
logical structure, with logical devices and logical tracks. A logical device is one or more
physical disk units known to the system as a single device. A logical track is a file alloca-
tion unit determined by the device type (refer to table 1-2-2).

T Keypunch mode selection is not supported for jobs entered through a 200U T or similar
remote batch terminal.

1-2-4 ' 60435400 J

TABLE 1-2-2. LOGICAL STRUCTURE OF SUPPORTED MASS STORAGE DEVICES

Number of Units in PRUs in a Logical

Mass Storage Device a Logical Device (n) Track
844-21 disk (half-track)f 1 through 8 n * 107
844-21 disk (full-track)t 1 through 8 n*112
844-41/44 disk (half- or
full-track) 1 through 8 n * 227
885 disk (half- or full-
track) 1 through 3 n * 640
ECS Undefined 16

Each permanent file on mass storage is accessed via a catalog track containing the perma-
nent file catalog of its owner. Indirect access files (refer to Permanent Files) must reside
on the same device as their catalog; direct access files may reside on another device. -
Space is allocated for mass storage files in units called reservation blocks. An indirect
access file reservation block is always 64 words (one PRU). A direct access file reserva-
tion block is a logical track. Within the user validation limits (refer to the LIMITS state-
ment in section 6), the maximum size of an indirect access file is the device size minus
space allocated for catalogs and other files. The size of a direct access file is limited
only by the device size and user validation limits.,

Magnetic Tape Files

NOS supports tape units that read and write 7-track and 9-track, 1/2-inch maghnetic tape
in binary and coded recording modes. In binary mode, NOS reads and writes 6-bit display
code. In coded mode, NOS converts display code to and from coded characters. The user
can select 8-bit ASCII or EBCDIC for coded 9-track tapes. Coded 7-track tapes use 6-bit
external BCD code.

The user can select 200, 556, or 800 bits per inch (bpi) density for T-track tapes or 800,
1600, or 6250 characters per inch (cpi) density for 9-track tapes, provided these densities
are available with the site hardware. NOS automatically processes tape parity errors and
end-of-tape conditions unless the user selects other processing options (refer to Processing
Options in section 10).

T Half-track is a recording mode that accesses alternate PRUs during a disk revolution;
full-track recording mode accesses consecutive PRUs. Half-track mode needs two
revolutions to access all PRUs on a physical track; full-track mode needs only one
revolution,

60435400 J 1-2-5 o

Tape Labels

Tape labels identify and delimit tape volumes and tape files. Tape marks begin and end
tape labels. A tape mark is a special bit sequence written and recognized by a tape unit.

NOS processes ANSI standard and nonstandard labeled tapes. Nonstandard labeled tapes

are those whose format or content do not conform to the ANSI standard described in appendix
G. NOS skips to the first tape mark when reading a nonstandard labeled tape if the tape
assignment statement specifies the LB=NS parameter (refer to section 10). All information
after the first tape mark is then handled as data.

ANSI standard labels are those that conform to the American National Standard Magnetic
Tape Labels for Information Interchange X3.27-1969 standard., NOS can create or verify
ANSI labels if the LABEL statement assigns the tape file. Label verification ensures that
the correct volume has been mounted. ANSI labels separate multifile set files and indicate
if a file continues on another volume.

File set configurations (* means tape mark):
Single file on single volume

{A) (A)
voL1|HDR1|* File A data 2{ *| EOF1 |*|*
Single file on more than one volums
{(A)
Volume 1yoL1| HOR1 File A data {{ | EOV1[*]*
(A) (A)
Volume |61 1|HDR1|* File A data § { *| eoF1[*[*
More than one file on a single volume
(A) (A) (B) (B)
voL1| HDOR1[* File A data?? *| eoF1|*{ HOR1|* File B data *! EOF1[*|*
More than one file on more than one volume
(a) (A) (B)
V°';'“‘° VOL1| HDR1[* File A data 22 *| EOF1|*|HDR1 |* File B data *| EOV1{*|*
(B)
V°';"‘° VOL1|HDR1|* File B data Z{L * EOV1|*|*
(8) (B) (C) (C)
V°':‘;'"° VOL1|HDR1 File B data Z L *| £oF1|*| HOR1|* File C data *| gOF1{*|*

Figure 1-2-2. Use of ANSI Labels

1-2-8 60435400 J

An ANSI-labeled tape must have the following labels, Other optional labels are described
in appendix G.

Label Location

VOL1 Beginning of volume

HDR1 Beginning of information (repeated on each volume containing all or part
of the file) :

EOF1 End of information

EOV1 End of volume (required only if the file continues on another volume)

Appendix G gives the tape label formats. The use of ANSI labels to delimit files within file
sets is illustrated in figure 1-2-2.

Tape Data Formats

NOS can read and write data on magnetic tape in any of the following formats.

Format Mnemonic
Internal (NOS default) I
System internal? S1
Stranger S
Long block stranger L
Foreign F

These data formats differ in their PRU (block) size and in their record and file mark
indicators (refer to table 1-2-1)., Other format differences are:

Tape Recording Noise
Format Labels Mode Sizeft
I Labeled or Binary only 7-track: <8 frames
unlabeled 9-track: <6 frames
SI Labeled or Binary oniyﬁ'f 7-track: <8 frames
unlabeled 9-track: <6 frames
S Labeled or Binary or coded User-selected;
unlabeled default is < 18 frames
L Labeled or Binary or coded User-selected;
unlabeled default is < 18 frames
F Unlabeled 7-track: binary User-selected; .
(labels or coded; default is < 18 frames
read as 9-track: binary
data) only

NOS terminates blocks on I and SI format tapes with a 48-bit block (PRU) terminator. The
terminator contains the total number of bytes in the block (including the terminator itself),
the number of blocks since the last HDR1 label, and the level number of the block. This
terminator enables read operations on I format tapes to check if the number of bytes read
and the block number expected match the byte count and block number in the terminator.

T NOS/BE system default tape format (binary mode only).
1 Tape blocks read that are smaller than the noise size are discarded. An attempt to
write a block smaller than the noise size produces an error message.
Ttt Specification of coded mode results in job termination; refer to TCOPY statement in
section 7.

60435400 J 1-2-7 e

If either does not match, the system attempts to recover the missing data. This feature
prevents dropped or fragmented blocks and provides a higher degree of reliability than
other data formats. v

Tapes should be read with the same format specified as when they were written. Data is

then recovered in its original form. For some formats, NOS writes extra bits which are
discarded when the tape is read. I format 9-track tapes are always written with an even

multiple of bytes per block. SI format 9-track tapes may have an extra 4 bits written per
block to preserve the lower 4 bits of a CM word. (A 60-bit CM word would be written in

eight frames, 8 bits per frame.)

All 9-track tapes are written with odd parity. Binary 7-track tapes have odd parity; coded
7-track tapes have even parity. If a parity error is detected on an F format 7-track tape,
the recording mode (binary or coded) is automatically switched.

Appendix J of volume 2 describes tape formats in greater detail,

FILE TYPES

The following defines types of files assigned to user jobs and types of permanent files on
mass storage. A file assigned to a job is known to the system by its entry in the file name
table/file status table (FNT/FST). A FNT/FST gentry contains the file name, the device on
which the file resides, the file type, and its current position and status.

A permanent mass storage file is known to the system by its entry in a permanent file

catalog associated with a user number. The catalog entry contains the file's name, location,
length, permission modes, and access history.

FILES ASSIGNED TO USER JOBS

NOS uses the following mnemonics for file classification.

INFT Input file PMFT Direct access file
PRFT Print file LIFT Library file

PHFT Punch file ROFT Rollout file

LOFT Local file TEFT Timed/event rollout file

PTFT Primary terminal file

Input files, print files, punch files, rollout files, and timed/event rollout files are queued
files. A queued file waits on mass storage until the system resource or peripheral equip-
ment it requires becomes available and its priority is the highest of the files in the queue,

Input Files

An input file is also called a job file because it contains user-supplied control statements
and data for a job (refer to section 3). Input files exist on mass storage in the input queue.
A file enters the input queue directly when a local or remote batch job enters the system or
indirectly when a user job submits another job via a SUBMIT, LDI, or ROUTE control
statement. The input file of a time-sharing job consists of all terminal input directed to

the system during a time-sharing session. Because the system processes the control state-
ment immediately after it is read from the terminal, a time-sharing input file is always
empty except when processing a procedure file. A user job refers to its input file by the
file name INPUT (refer to Input File Control in section 3).

1-2-8 60435400 J

Print Files

A print file contains data to be printed. It is created and placed in the print queue as a
result of the following.

° At job termination when the system changes the local file OUTPUT, if present,
into a print file.T :

e At execution of an OUT, ROUTE, or DISPOSE control statement naming a local
file to be printed.

The local or remote batch subsystem processes the files in the print queue, By default,

jobs originating at a central site card reader are routed to a line printer with the same ID.
Similarly, remote batch output returns to the remote batch terminal where the job originated.
Each remote batch terminal is given a unique terminal identification code (TID) when it logs
in. Remote batch jobs and the print files they generate are given the TID of their originating
terminal.

Users can override the default routing of print files with the ROUTE statement (refer to
section 7). The ROUTE statement can specify a printer or printer type.

As a print file waits in the print queue, its priority increases. The file is printed when
its printer becomes available and when its priority is higher than all other files destined
for that printer.

OUTPUT has no special internal format. The user may wish to add appropriate printer
control characters (refer to Line Printer Carriage Control in appendix I). Appendix D
contains the printer output from the compilation and execution of a sample program.

Punch Files

A punch file contains data to be punched on cards. A punch file is routed from the mass
storage punch queue according to the name the user assigns it or according to parameters
specified on a ROUTE or DISPOSE statement, The following are punch file names.

PUNCH Contains Hollerith punch output.
PUNCHB Contains binary punch output.
P8 Contains 80-column absolute binary punch output.

Punch files enter the punch queue at job completion or upon execution of an OUT, ROUTE,
or DISPOSE control statement. The routing and scheduling procedures for punch files are
. the same as for print files. Punched card formats are described in appendix F.

T Not applicable to time-sharing jobs.

60435400 J 1-2-9 o

Local Files

Local files are temporary files, The local file type includes all scratch and working files
except the primary file,

H

The user can create a local file by:

o Naming the file in a COPY control statement or in a read or write statement
within a program. A local file created in this manner always resides on mass
storage.

e Naming the file in an ASSIGN or REQUEST control statement assigning the local
file to mass storage or to a time-sharing terminal or in an ASSIGN, LABEL, or
REQUEST control statement assigning the local file to magnetic tape.

e Naming the file in a GET control statement generating a local mass storage file.
To save the contents of a local mass storage file, the user issues a SAVE or REPLACE
control statement to copy the local file to a permanent indirect access file. Data written

on a local file assigned to magnetic tape is written on the tape for later access. Local
files are released upon job completion.

Primary Files
The primary file is a temporary file designated as the primary file by 2a PRIMARY, NEW,
or OLD control statement. Only one primary file is allowed at a time. Some control

statements use the primary file as the default file when a file name is not specified. NOS
rewinds the primary file before each job step.

Direct Access Files
A user assigns a direct access permanent file to his job by issuing an ATTACH or DEFINE

control statement. When the user attaches the file in a mode permitting file modification,
he can write on the permanent file. Refer to Permanent Files in this section.

Library Files

A library file is a read-only file that several users can access simultaneously. This file
type should not be confused with system library programs or with public permanent files
stored under user number LIBRARY. Refer to Libraries in this section for a description
of the uses of the term library in NOS.

A user must be validated to access or create a library file. The validated user can create
a library file as follows:

1. Create a local file with file name lfn.
2. Enter the following control statements.

LOCK(lfn)
COMMON(1fn)

1-2-10 60435400 J

The validated user can read a library file after naming it in a COMMON control statement.

A library file cannot be removed from the system once it has been created except by a
deadstart. Library files are not retained on initial (level 0) deadstart. They are retained
on level 1 or 2 deadstart if a system checkpoint was done after their creation. They are
always retained after a level 3 deadstart.

Rollout Files

If, during job processing, the system or the user determines that a job must be temporarily
removed from central memory, the system writes all information concerning the job on a
system-defined rollout file. The rollout file includes the contents of the CM field length
and the ECS field length of the job and the job-related system information from CMR. The
file is read back into CM (and ECS) when the job is again assigned to a control point (refer
to Rollout Control in section 3). :

Timed/Event Rollout Files

A timed/event rollout file is similar to a rollout file in that it contains all the information
concerning a job temporarily removed from central memory. However, a timed/event
rollout file is rolled back into central memory only when a specified event has occurred
(such as a file no longer busy) or a specified time period has elapsed.

A job may be written on a timed/event rollout file as a result of system or user action.
The system uses a timed/event file if a job issues file or device requests that cannot be
immediately honored. Users place their jobs on a timed/event rollout file when they use
the ROLLOUT control statement to roll out their jobs for a specified time period.

PERMANENT FILES

Permanent files are retained on mass storage until their creator purges them. There are
two types of permanent files, indirect access permanent files and direct access permanent
files.

Each permanent file is listed in a permanent file catalog associated with a user number.
Each permanent file catalog lists all permanent files created under that user number and
their location on mass storage. Unless an alternate user number is specified, the system
assumes all permanent file requests are made to this catalog.

User numbers (refer to Validation in section 3) that contain asterisks represent users with
automatic read-only permission to files in the catalogs of other users. The user number
must match the alternate user number in all characters not containing asterisks, For
example, the user with user number *AB*DE* can access the catalogs of the following users.

UABCDEF

UABDDEE

MABCDE1

60435400 J 1-2-11 e

Indirect Access Permanent Files

Indirect access permanent files are accessed by copying the permanent file to a temporary
file (local or primary file type). The user creates an indirect access permanent file by
naming a temporary file in a SAVE or REPLACE control statement. He can retrieve a
temporary copy of an indirect access file by naming it in an OLD or GET control statement.
To alter the indirect access file, he enters a REPLACE statement naming the temporary
copy. The system then writes the temporary copy over the permanent copy of the indirect
access file,

Mass storage for indirect access permanent files is allocated in 640-character blocks (64
CM words). Because of its small allocation block size and the disk space required to
maintain a working copy, indirect files are usually relatively small files.

The maximum size of an indirect access file is determined either by the value of the FS
validation parameter described in the LIMITS control statement in section 6, or if no FS
restriction is imposed, by the device limitations described in Mass Storage Files in this
section.

Direct Access Permanent Files

The user accesses a direct access permanent file directly, not through a temporary copy.
The user creates a direct access permanent file with a DEFINE control statement. He
accesses the file with an ATTACH control statement. If he wants to alter the file, he must
attach it in modify, append, or write mode. Only one user at a time can attach the file in
write mode; this feature is called the write interlock. Data is written directly on the
permanent file.

Mass storage for direct access permanent files is allocated in large blocks; the block size
depends on the mass storage device type on which the file resides (refer to Mass Storage
Files in this section). Because of their large allocation block size and the write interlock
feature, direct access files are often used for database files.

The maximum size of a direct access file is determined by the DS validation parameter
described in the LIMITS control statement in section 6, or if no DS restriction is imposed,
by the device limitations described in Mass Storage Files in this section.

MASS STORAGE FILE RESIDENCE

For most mass storage file operations, the user need not be concerned about the specific
device on which his file resides. However, under certain circumstances, the user may
wish to override the default device residence for local or permanent files.

With the ASSIGN control statement, any user who has the necessary validation can assign
a local file to either a specific device or to a device category.

Every permanent file the user creates resides either in his family of permanent file

devices or on an auxiliary device. Unless the user specifies otherwise, all permanent files
are saved in his family.

1-2-12 60435400 J

FAMILY DEVICES

A family consists of 1 through 63 mass storage devices, Withina fémily, each user has
a master device that contains his permanent file catalog, all his indirect access files, and
may contain some or all of his direct access files.

Normally a system has only one family of permanent file-devices. However, because
families are interchangeable between NOS systems, several families may be active on one
system, or a system may be part of 2 multimainframe system. For example, consider an
installation with two systems, A and B. System A provides backup service to system B.

If system A failed, its family of permanent file devices could be introduced into system B
without interrupting current operations on system B.

The user identifies his family by supplying a 1- to 7-character family name. The family
name is included on the USER statement in batch jobs and is entered during login in time-
sharing jobs. If only one family is active or if another family has been introduced into the
user's normal system, he may, but need not, supply his family name. When the family
name is omitted, the system uses the system default family name. If the user's family has
been introduced into another system, he must supply his family name,

If the user chooses to save his files on family devices, he has the option of either using
the system default device type or specifying another type of permanent file device.

AUXILIARY DEVICES

An auxiliary device is a supplement to the mass storage provided by family devices. It is
identified by a 1- to 7-character pack name. An auxiliary device is not necessarily a disk
pack that can be physically removed as the pack name implies. Rather,. an auxiliary device
can be any mass storage device supported by the system and defined as such by the
installation. Each auxiliary device is a self-contained permanent file device; all direct

and indirect access files represented by the catalogs on the device reside on the device.
Auxiliary devices may be defined as public or private. Anyone permitted to use auxiliary
devices who supplies the appropriate pack name can create, replace, and access files on a
public device. Only one user, the owner, can create and replace files on a private auxiliary
device, but others may access those files as permitted by the owner.

LIBRARIES

As defined in the glossary (appendix C), the term library has several meanings. The
applicable meaning for the term must be determined from its context. The following
describes some NOS libraries.

USER NUMBER LIBRARY

Files stored under user number LIBRARY need not be libraries themselves. An installa-
tion saves programs or text as files under user number LIBRARY so that validated users
can access them. Users access those files by specifying the file name and the alternate
user number LIBRARY on their permanent file request or by issuing the LIBRARY time-
sharing command (refer to the IAF Reference Manual or the Time-Sharing User's Reference
Manual).

60435400 J 1-2-13 e

PROGRAM LIBRARIES

A program library is a collection of source deck images stored in compressed Modify or
Update format. The validated user accesses these"compressed source decks through
MODIFY or UPDATE control statements (refer to section 13).

USER LIBRARIES

User libraries are the files named in the LIBRARY loader control statement and searched by
CYBER Loader to satisfy external references within the program it is loading. They
contain compiled or assembled routines. The first record of a user library is a ULIB
record; the last record is an OPLD directory record (refer to the LIBGEN statement in
section 14).

User libraries are generated by the user, the product, or the system. CYBER Loader first

searches the user-generated libraries specified by a LIBRARY or LDSET control statement
(refer to the CYRER Loader Reference Manual). CVYRER Ilcader then searches the product
set library (such as the FORTRAN Extended library) stored on the system library. Finally,
CYBER Loader searches the system default user library SYSLIB, which is also on the

system library.

Section 14 describes control statements that catalog and manipulate library records.

1-2-14 80435400 J

JOB FLOW AND EXECUTION 3

A job is a file of statement images.T Its first record contains control statements that
specify job processing requirements. Every job begins with a job statement and a USER’
statement. The end of the control statement record is marked by an EOR.

Records that follow the control statement record contain program, data, or directive

input for processing control statements. The user can consider the job file as two files,
entered as one but processed concurrently. As each control statement requiring additional
user input is processed, the system reads the next record in the input file (unless the
control statement specifies otherwise). These following records must be in the same
order as the control statements that use them.

For example, figure 1-3-1 illustrates a basic job deck. The first three control statements
are processed by system routines that require no additional user input. The fourth control
statement, FTN{(GO), requests two job steps, the compilation of a FORTRAN Extended
program and its execution. Because the I parameter is omitted from the statement, the
system reads the next record of the input file, expecting it to be a FORTRAN source pro-
gram. After successful compilation, the system executes the program, taking input data
from the third record of the input file. Normal job termination occurs when the system
reads the control statement record EOR (the first 7/8/9 card).

JOB INITIATION

The user initiates jobs by:
e Reading a card deck in through a local or remote batch reader.
° Logging into a time-sharing terminal, -

e Entering a job via an LDI, ROUTE, or SUBMIT control statement within a job
already in the system. '

T A time-sharing job consists of all input entered during a time-sharing session (refer to
the IAF Reference Manual or the Time-Sharing User's Reference Manual).

60435400 J 1-3-1 o

e
DATA
RECORD
€— DATA DECK
\
RECORD <—— SOURCE DECK
\ FTN{GO}
CHARGEL59.L91N52
USERINAM+PASS<FAMAT
CONTROL FTNJOB.) -
STATEMENT
RECORD
-
’

Figure 1-3-1. FORTRAN Compile and Execute Deck

JOB ORIGIN TYPES

When a job enters the system, the system determines the job origin type according to the
means used for job initiation. Its origin identification remains with the job throughout job
processing. The job origin type determines how the job is handled and how it exits from
the system.

Jobs originating from the system console are assigned system origin type (SYOT). Jobs
entered through the time-sharing executive or the Interactive Facility (IAF) are assigned
time-sharing origin type (TXOT). Jobs entered through a local batch card reader are batch
origin type (BCOT) jobs. Jobs entered through Export/Import or the Remote Batch
Facility (RBF) are remote batch origin (EIOT) jobs.

1-3-2 60435400 J

If validated, a user can initiate jobs using the LLDI, ROUTE, or SUBMIT control statements.
Jobs initiated by ROUTE or SUBMIT statements can be either batch origin or remote

origin jobs depending on the statement parameters. Jobs initiated by LDI statements are
batch origin jobs.

JOB NAMES

After entering the system, the job is assigned a unique job name to prevent job name
duplication within the system. This name is not the job name specified on the job statement.
The first 7 characters of the job identification are the system-assigned job name; the

eighth character indicates the job origin type. This job name precedes all messages issued
to the system dayfile for that job. These messages include normal operating messages,
error messages, and accounting information issued by the system.

SYSTEM ORIGIN TYPE (SYOT) JOB NAME FORMAT

The first 4 characters of a system job name are obtained from the job name entered or are
zero-filled if fewer than 4 characters are entered. The next 3 characters are a unique
system sequence number in the range from AAA to 999. The eighth character is an S.- For
example, if the job entered is DIS, a possible job name is DISOAABS.

BATCH ORIGIN TYPE (BCOT] JOB NAME FORMAT

The first 4 characters of a batch origin job name are generated from the user index
associated with the user number supplied on the USER control statement. These 4 charac-
ters are unique to the user. The next 3 characters are the job sequence number. The
eighth character of a batch origin job name is B.

TIME-SHARING AND REMOTE BATCH (TXOT AND EIOT) JOB NAME FORMAT

The first 4 characters of these job names are generated from the user index associated
with the user number supplied by the user when logging into the system. The next 3 charac-
ters represent the number of the terminal on which the user is logged in for TXOT or the
system sequence number for EIOT. The eighth character is T for time-sharing origin

jobs and E for remote batch jobs.

All jobs entered via a SUBMIT or ROUTE control statement derive the first 4 characters

of their job names from the job's current user index in the same manner as EIOT and
TXOT jobs. The last 3 characters are the system sequence number with the eighth charac-
ter being either E or B, as described previously, depending on the parameters supplied
with the SUBMIT or ROUTE statement.

60435400 J 1-3-3

VALIDATION

The USER statement follows the job statement and is used to validate the user as a legal
user (refer to USER statement in section 6). If the user is validated, a set of control
values is set in the.control point area; these values are used by the system to control all
system requests. In most cases, if the user is not permitted to perform specific functions
(such as access nonallocatable devices), his job is aborted and the message

ILLEGAL USER ACCESS.
is issued when the illegal function is attempted.

To determine the extent of his validation, the user can issue the LIMITS command and
receive a listing of his current validation control values. Refer to the LIMITS control
statement in section 6 for an explanation of these values. For further information or
to change his validation, the user should contact installation personnel.

Each user number has a unique user index associated with it. Once a user number is
validated, the user index is set in the control point area. The system uses this index to
determine the location of the user's permanent file catalog. (Refer to the NOS System
Maintenance Reference Manual for an explanation of the user index.)

ACCOUNTING

The unit of accounting for the system is the system resource unit (SRU). The SRU is a
composite value of central processor time, I/O activity, and memory usage. SRU
operations are initiated at the beginning of a job and reinitiated whenever another CHARGE
control statement is encountered. SRU information includes: '

e Central processor time.

e Mass storage activity.

® Magnetic tape activity.

e Permanent file activity.

e SRU value.

e Application account charges.t
This information is written to the user's dayfile at the end of the job or whenever a CHARGE
statement is processed. The user may request SRU information to be written to his output
file at any time during the job by issuing the ENQUIRE or SUMMARY control statement.

The format of SRU information written in the dayfile is given under Job Completion in this
section.

tNot currently supported by the system but reserved for future use.

1-3-4 60435400 J

JOB SCHEDULING

When a job enters the system, it is placed in the input queue on mass storage, where it
waits for the required system resources to become available. The job is assigned an input
queue priority depending on its origin. The system priorities are system-defined and can
be altered only by the system operator. The job queue priority is advanced as the job waits
in the queue. The priority ages to a system-defined limit. The job scheduler periodically
scans the queues and active jobs to determine whether action is necessary to ensure that
the highest priority jobs are being serviced. This action may include rolling out low priority
jobs or rolling in higher priority jobs. The job scheduler is also activated to analyze the
system status whenver the status of the system changes (for example, when the field

length of a job is released, a job enters a queue, or a job completes). Because of this
automatic scheduling and analysis of system status changes, a user can increase system
performance by releasing memory when all the assigned memory is not required.

Once a job is brought to a control point, normal control statement processing begins. The
general flow of the control statement processing is illustrated in figure 1-5-1.

JOB CONTROL

While a job is at the control point, the system exercises the following controls over the job.
FIELD LENGTH CONTROL
The system controls the field length assigned to a job, adjusting it according to the require-
ments of each job step, A programmer can influence the field length assigned to his job
by using the central memory job statement parameter (refer to section 5) and the MFL
and RFL control statements (refer to section 6).
The maximum field length for a job (MAXFL) is set at the smallest of the following values.
e Central memory job statement parameter value, if specified,
® Maximum field length for which the user is validated.

¢ Maximum field length available for user jobs (dependent on machine size).

The maximum field length for each subsequent job step (MFL) is initially set equal to MAXFL.
It can be reset, however, by MFL control statements. MFL cannot exceed MAXFL,

The running field length (RFL) is initially set to zero, indicating system control of field
length. The RFL control statement resets RFL. RFL cannot exceed the current MFL.

(]
"y

To set the initial field length for a joh step, the system usges th

irst value set by one of
the following,

e Predefined initial field length for a system routine (RFL= or MFL= special entry
point as described in appendix F, volume 2).

e Highest high address (HHA) from EACP loader table (54 table). Refer to the
CYBER Loader Reference Manual, '

e RFL value, if nonzero.

60435400 J ; 1-3-5 J

e The smaller of the MFL or the.

50000B).

CYBER Loader further adjusts the field len
added or removed as the needs of the progr
REDUCE control statement in the CYBER Loader Refer

am change,

installation-defined default value (release value

gth during program loading. Memory may be
Refer to the description of the
ence Manual.

The following example shows a control statement record, the MAXFL., MFL, and RFL

settings, and the actual field length used to process the statement.

Control Statement

JOB(CM60000)
USER(USERABC, 123, FAM1)
CHARGE(4922, 66X)

GET(ABSPROG,RELPROG)

RF1.(40000)

ABSPROG.

MF1.(50000)

RELPROG.

Field
MAXFL MFL RFL Length
60 000 60 000 0 700
60 000 60 000 0 700
60 000 60 000 0 2200
60 000 60 000 0 1700
60 000 60 000 0 1500
60 000 60 000 40 000 40 000
60 000 60 000 40 000 1500
60 000 50 000

Explanation

The CM parameter
sets the MAXFL and
MFL values, The sys-
tem sets the field
length as required for
processing the control
statements.

GET statement re-
trieves copies of an
absolute program and
a relocatable program.

The user issues an
RF1L statement to set
the field length for
execution of the abso-
lute program that
follows,

The absolute program
on file ABSPROG is
executed within a

40 000-word field
length,

The user issues an
MFL statement to set
the maximum field
length for the following
relocatable load,

0 550 000 If more than 50 000

words is required, the
job aborts.

60435400 J

INPUT FILE CONTROL

All user jobs, when initiated, have a file named INPUT. This file contains the control
statements and other input records required for job execution. (INPUT is a locked file.)
As a result, the user may read from it and reposition it, but the system does not allow him
to write on it. If for some special reason the user needs to write on INPUT, he should
first issue a RETURN(INPUT) control statement (refer to section 7)., This statement
changes the name of the file from INPUT to INPUT* and leaves it assigned to the user's job.
The change of name on RETURN applies only if the input file is of type INFT.

TIME LIMIT CONTROL

The system sets a time limit for each job step unless the job statement or the SETTL
statement specifies a job step time limit. This time limit is the amount of central processor
time that any one job step is allowed. The user cannot increase the limit beyond that for
which he is validated,

While a job is using the central processor, the time of usage is accumulated and checked
against the time limit for each job step. If the job is not a time-sharing (TXOT) job, the
job in execution is aborted when the time limit is reached. Time-sharing origin jobs are
rolled out, after which the user can increment the time limit and resume execution from
the point where the time limit was exceeded. Refer to the IAF Reference Manual or the
Time-Sharing User's Reference Manual for more details.

SRU LIMIT CONTROL

The system sets a limit on the number of system resource units (SRU) that a job step or an
account block can accumulate. An SRU includes central processor time, central memory
usage, permanent file activity, and mass storage and tape I/O. An account block is that
portion of a job from one CHARGE statement to the end of the job or the appearance of
another CHARGE statement. The user may alter these limits through the SETJSL and
SETASL control statements or macros; however, he may not set either limit beyond that
for which he is validated. .

While a job is in the system, SRU usage is accumulated and checked against the SRU step
and account block limits. If the job is not a time-sharing job (TXOT), the job is aborted
when either limit is reached. Time-sharing jobs are rolled out. After a time-sharing job
is rolled out, the user can increment the limit and resume execution from the point where
the limit was reached. Refer to the JAF Reference Manual or the Time-Sharing User's
Reference Manual for more details.

60435400 J 1-3-7

CONTROL STATEMENT LIMIT CONTROL

If a job executes more control statements than the number for which the user is validated,
the following message is issued when the limit is reached by job processing.

INITIAL CONTROL STATEMENT LIMIT.

The job is then allowed eight additional control statements for error processing such as
saving and dumping of files. When this limit of eight statements is exceeded, the job is
terminated with the following message.

CONTROL STATEMENT LIMIT.

A user's control statement limit is given by the CC field in the output from the LIMIT con-
trol statement (refer to section 6).

ROLLOUT CONTROL

Each executing program is allowed to reside in CM for a certain amount of time before
relinquishing its space to another program. When this CM time slice is exceeded, the
program may be rolled out. This means that the contents of the job field length, the job
control area, and the control registers (exchange package) are written to mass storage.
The program remains on mass storage until it is rolled back into memory. Execution re-
sumes from the point where rollout occurred. The amount of time the job is allowed to
occupy CM is called the central memory time slice. The central memory time slice is a
system parameter that can be changed only by the system operator. The time slices vary
for each origin type. Whether a job is rolled out when its time slice expires depends on
several factors.

e Whether there are jobs waiting in the input and rollout queues.
e Whether the jobs that are waiting have a lower priority.

e Whether jobs that are waiting require more field length than would be available
if all jobs of lower priority were rolled out.
When a job is rolled out, it is assigned a queue priority. The priority assigned is a system
parameter and can be changed only by the system operator. The queue priorities can vary
for each origin type. The queue priority is aged (incremented) while the job is in the rollout
queue. Normally, all other factors being equal, the job with the highest queue priority is
selected to be rolled in.

| 158 60435400 J

ERROR CONTROL

When job step activity ceases, the system must determine the next control statement to
process. If activity ceased due to normal termination, the next control statement processed
is the next statement in sequence. If an error caused activity to cease, the system issues
the appropriate dayfile message and exits from the job.

Errors may be detected by system software or hardware. When the system hardware detects
an error condition, NOS issues two or more dayfile messages. The first message gives the
address where the error was detected. The second and following messages give the types of
errors that occurred. NOS then dumps the exchange package for the job to OUTPUT (for
batch origin jobs) or to the mass storage file ZZZDUMP (for time-sharing jobs) (refer to
section 12).

After issuing the appropriate dayfile message(s), the system searches for an EXIT control
statement. If an EXIT statement is found, processing continues with the statement following
EXIT. If, before detecting the error, the system encounters a NOEXIT statement, it makes
no search for an EXIT statement, and processing continues with the next control statement.
If neither an EXIT nor a NOEXIT statement is encountered, the system terminates the job.
(Exit processing is further described in section 5.)

The user can specify the error exit mode on which the system is to abort with the MODE
statement so that address or operand out of range and/or indefinite operand errors are

allowed and program execution continues (refer to section 6). The default error exit mode
specifies that all errors terminate the job.

Volume 2 describes the EREXIT and MODE macros that can be used to control exit pro-
cessing in COMPASS programs, Section 12 of volume 2 specifies file completion procedures
when a job step abort occurs. -

SECURITY CONTROL i

Unless the job is system origin type or the user is validated for system origin privileges
and DEBUG mode has been set at the system display console, system security imposes

the following restrictions on control statements which dump any portion of the field length
of the previous job step.

. They may not follow the execution of certain protected system programs (refer
to section 1, volume 2, for further definition).

[They may not follow user programs which have requested protection (refer to
the description of the SETSSM macro, section 6, volume 2).

60435400 J ‘ 1-3-9 o

If the user violates these restrictions, the system issues an informative message to the
dayfile and ignores the control statement.

The following are the restricted control statements.

CATALOG COPYCF DMD LBC RESTART
CKP COPYCR DMDECS LIBEDIT TCOPY
COPY COPYEI DMP LOC VERIFY
COPYBF COPYSBF DMPECS PBC VFYLIB
COPYBR COPYX EDIT RBR WBR

CCL statements are also restricted (refer to section 4).

JOB COMPLETION

When there is no more activity at a control point, no outstanding central processor requests,
and no control statements to process, the job is completed in the following manner.

1-3-10

All CM assigned to the job is returned to the system.

ECS assigned to the job is released.

All equipment assigned to the job is returned to the system.

All library files attached to the job are returned; other jobs can then access them.
All scratch (local) file space used by the job is released. |

All direct access permanent files attached to the job are returned; the status
information for these files is updated.

The following summations of job activity are added to the end of the user's day-
file. This information is also issued to the associated account dayfile. The
entries in the account dayfile also include the job name.

e Application charge activity in kilounits:
hh. mm. ss. UEAD, xxxxxx.xxxKUNS.

e Permanent file activity in kilounits:
hh. mm. ss. UEPF, xxxxxx.xxxKUNS.

e Mass storage activity in kilounits:
hh. mm. ss. UEMS, xxxxxx.xxxKUNS.

° Magnetic tape activity in kilounits:
hh.mm. ss. UEMT, xxxxxx.xxxKUNS.

60435400 J

e Accumulated central processor time in seconds:t
hh. mm. ss. UECP, xxxxxx.xxxSECS.

e SRU value in units for total job usage including CPU time, I/O activity, and
memory usage:

hh. mm. ss. AESR, xxxxxx.xxxUNTS.

® Lines printed in kilolines:
hh. mm, ss. UCLP, mies, xxxxxx.xxxKLNS.

mi Machine ID
es EST ordinal of the output device

e Cards read in kilocards: .
hh.mm. ss. jobname. UCCR. mies. xxxxxx.xxxKCDS.

The following information is issued to the account dayfile only.

e Cards punched in kilocards:
hh, mm. ss. jobname. UCPC. mies., xxxxxx.xxxKCDS,

8. Control point dayfile is copied to ;che end of the OUTPUT file. If an OUTPUT file
does not exist or if it is a deferred routed file with EC=A9 specified, the dayfile
is copied to another print file.

9. All print and punch files are released to the print and punch queues.

10. The control point area is cleared for the next job.

t If the installation defines a CPU multiplier value, the value given is the product of the
actual CPU seconds and the multiplier.

60435400 J 1-3-11

CDC CYBER CONTROL LANGUAGE 4

D

INTRODUCTION

The CYBER Control Language (CCL) is a set of statements that the user can insert in
the control statement record of a job to initiate tests, transfers, and loops within that
record. CCL also enables the user to set values to symbolic names, display results in
the dayfile of the job, and interrogate the system to determine the status of files. CCL
also enables a user to create and reference procedure files which contain sequences of
control statements and/or control language statements.

Another system control language is also available but users are ehcouraged to use CCL
(refer to appendix H).

The following paragraphs describe the elements of CCL. This is followed by a descrip-
tion of CCL expressions. The remainder of the section describes CCL statements,
functions, and procedures.

The following CCL statements are used to skip or conditionally process a sequence of
statements,

Statement Description

IFE Passes to the next statement if an expression associated with IFE
is true; skips until a terminating CCL statement is found, if it is
false,

SKIP Skips until a terminating CCL statement is found.

ELSE Either terminates or initiates skipping, depending upon other CCL

statements employed.
ENDIF Terminates skipping initiated by IFE, SKIP, or ELSE,

The following CCL statements identify a sequence of control statements as a loop that
can be repeatedly processed.

Statement Description

WHILE Establishes the beginning of the loop. If the associated expression
is true, the loop is processed; if it is false, the loop is not
processed,

ENDW Establishes the end of the loop.

60435400 F 1-4-1

The following CCL statements assign and display values associated with symbolic names.

Statement Description

SET Allows the user to assign values to special CCL registers.

DISPLAY Evaluates an expression and displays the result in the dayfile of
the job.

CCL provides the following functions to be used with expressions.

Function Description

FILE Determines the attributes of a file.

DT Determines the type of device on which a file resides.
NUM Determines if a parameter has a numeric value.

SS . Determines .the subsystem in use.

The following CCL statements enable the user to define and control processing of a
control statement procedure,

Statement Description
BEGIN Initiates processing of a procedure.
REVERT Returns processing from a procedure to the control statement

record that called it.

The following CCL commands identify statements requiring special processing.

Command Description
. PROC Precedes and identifies a procedure.
.DATA Precedes a sequence of statements to be written to another file.

. EOR Separates records within the statement sequence to be written to
another file. :

. EOF Separates files within the statement sequence to be written to
another file,

. ¥ Prefixes a comment line,
All CCL statements must be terminated. Within a statement, an expression or function may
end in a right parenthesis. If this occurs at the end of the statement, the right parenthesis

does not serve as the statement terminator; an additional terminator must be included to
complete the statement,

1-4-2 60435400 J

EXPRESSIONS

A CCL gxpression consists of cperators and operands. Expressions can be nested
within expressions by means of parentheses; however, parentheses do not imply multi-
plication. Operators can be arithmetic, relational, or logical. Operands can be any
of the following.

Operand Description
Integer constant A string of 1 to 10 characters. If the string is to be a literal,

it must be delimited by dollar signs ($xxxooooxx$).

Symbolic name An alphanumeric character string of 1 to 10 characters. It has
a numeric value. This value is either an installation-defined
constant or a user- or CCL-defined variable.

CCL function A CCL-defined operand which determines attributes of a file or
symbolic name. .

Expression A CCL expression enclosed with separators. This expréssion
is evaluated, and the result is the operand.

An expression can be as long as the user wishes; however, there must be a period or a
closing parenthesis within the first 50 operands.

Any character string beginning with a numeric character is treated as numeric. This string
‘cannot contain any nonnumeric character except an optional postradix B (octal) or D
(decimal). An alphanumeric string must begin with an alphabetic character.

CCL expressions can be used with the CCL statements IFE, WHILE, DISPLAY, and SET
and with the FILE function. The separator preceding the expression can be a comma or

left parenthesis. The separator following the expression must be a comma.

Integer arithmetic is used in each step of the evaluation of a CCL expression. Division,
n}i%ltiplication. and exponentiation produce a zero result if the absolute value exceeds
2 ‘1;

OPERATORS

ARITHMETIC OPERATORS
The following are the CCL arithmetic operators.

+ Addition

- Subtraction

* Multiplication
/ Division

%% Exponentiation

Leading - Negation
Leading + Ignored

60435400 J - 1-4-3

RELATIONAL OPERATORS

A relational operator produces a value of one if the relationship is true and zero if it
is false. The following are the CCL relational operators (either form may be used).

= _EQ. Equal to
.NE. Not equal to

< L,LT. Less than

> .GT. Greater than
.LE. Less than or equal to
.GE. Greater than or equal to

LOGICAL OPERATORS

When a CCL expression contains a logical operator, CCL evaluates the full 60 bits of
each operand and produces a 60-bit result. If the result has any bits set, it is true;
if no bit is set, the result is false. The following are the CCL logical operators.

.EQV, Equivalence

.OR. Inclusive OR

. AND, AND

.XOR. Exclusive OR

.NOT. Complement

ORDER OF EVALUATION

The order in which operators in an expression are evaluated is:
1. Exponentiation

. Multiplication, division

Addition, subtraction, negation

.

Relations

Complement
AND

Inclusive OR

.O'.'D -3 (=] [41] [w [\~
. B

Exclusive OR, equivalence

- 60435400 J

OPERANDS

INTEGER CONSTANTS

An integer constant is usually 2 whole number (a numeric value without a fractional
component) but may be a literal (a $-delimited character string). If it is numeric, it must

be 10 characters or less including an optional postradix. If no postradix is included,

decimal is assumed. If an integer constant is a literal, it must be 10 characters or less,
excluding the $ delimiters. If CCL encounters a literal, it is right-justified in display code .
and processed as a whole number,

SYMBOLIC NAMES

A symbolic name is an alphanumeric string to which a numeric value can be assigned.

This numeric value may be defined at installation time or may be a variable set by the
user or by CCL. All variables, except those for OT (job origin types), SYS (host
operating system), VER (version of the operating system), and TIME (current time of day),
have an initial value of zero.

Symbolic names with special attributes are listed in table 1-4-1,

These attributes are defined as follows:

Attribute Description S
Local An X in this column of the table indicates that iae vawuc is saved by a

BEGIN statement before initiating a procedure and restored by a
REVERT statement upon termination of a procedure. (Procedures are
explained later in this section.)

Set An entry in this column specifies how the symbol obtains its value. One
or more of the following characters may be listed in this column for
each symbolic name,

Character _ Description
B Set by BEGIN.
@] Set by the operating system.
R Set by REVERT.
U Set by the user with the SET control statement or the

SETJCI macro (refer to section 6 in volume 2).

Compare The entries in this column are symbolic names with fixed values re-
ferring to errors or job status. These fixed values are compared with
the symbolic names in the NAME column via a CCL statement, This
produces a true or false result. :

Example:

If BCO in the NAME column is equivalenced to OT in the COMPARE
column with the CCL statement

IFE, BCO=0T, JUMP.

and the job is local batch, the BCO=OT expression is true and control
passes to the next statement. (IFE is explained later in this section.)

60435400 J 1-4-5

TABLE 1-4-1. SYMBOLIC NAMES WITH ARITHMETIC VALUES

Name Local Set Compare Description

R1 X U Contents, control register 1

R2 X U Contents, control register 2

R3 X U Contents, control register 3

R1G U Contents, global control register 1

EM U Current exit mode (user sets with MODE
statement)

FL (O Current CM field length

MFL o Maximum CM field length

MFLL O Maximum ECS field length _

CMN o Last running CM field length divided by
100, (refer to RFL control statement
in section 6)

ECN) Last running ECS field length divided
by 100g (refer to RFL control statement
in section 6)

PNL B,R Procedure nesting level:
0 Original control statements
1 Processing first level procedure
50 Processing 50th level procedure

DSC X U,0 Dayfile skipped control statement flag

EF X u,o Previous error flag

EFG U,R Global error flag

TLE EF Time limit error

ARE EF Arithmetic error

PPE EF PPU abort

CPE EF CPU abort

MNE EF Monitor call error

ODE EF Operator drop

PSE EF Program stop error

FLE EF File limit error

ECE EF ECS parity error

TKE EF Track limit

MSE EF Equivalent to track limit

PEE EF CPU parity error exit

SYE EF System abort

FSE EF Forced error

ORE EF Override error

SSE EF Subsystem abort error

SRE EF SRU limit error

RRE EF Rerun error

OKE EF Operator kill drop

OoT O Job origin type

SYO oT System origin

BCO oT Local batch origin

EIO oT Remote batch origin

TXO oT Time-sharing origin

SYS O Host operating system

NOS SYS NOS operating system

VER 0] Version of the operating system. This

is a numeric value which varies with
different systems
TIME 0] Current time of day (hhmm)

1-4-8 60435400 F

The symbolic names with true or false values are:

TRUE = 1

T = TRUE = 1

FALSE= 0

F = FALSE = 0

SWn = sense switch, n = 1 to 6

These symbolic names with true or false values, and the symbolic names in table 1-4-1
are valid in any CCL expression. They are not valid within FILE or DT functions.
The FILE and DT functions have their own file function symbolic names.

CONDITIONAL STATEMENTS

The CCL conditional statements initiate conditional or unconditional skipping of statements
in the control statement record of a job. There are four conditional statements: SKIP,
ENDIF, IFE, and ELSE.

All conditional statements have a label string. This label string matches the statement
that initiates the skip with a terminating statement that ends the skip. The terminating state-
ment must be in the same procedure as its initiating statement.
By default, skipped control statements are not written in the dayfile of the job. The SET
statement (explained later in this section) can change this default and cause skipped state-
ments to be written in the dayfile.
SKIP STATEMENT
The SKIP statement initiates an unconditional skipping of a sequence of statements that
follow the SKIP statement. Control resumes with an ENDIF terminating statement that
has a label string matching the label string specified on the SKIP statement. Only an
ENDIF statement can serve as a terminating statement for a SKIP statement,
The format of a SKIP statement is:

SKIP, ls.

ls Label string; 1 to 10 alphanumeric characters beginning with an
alphabetic character.

An example of the use of the SKIP statement is given after the description of the
ENDIF statement which follows.

60435400 J 1-4-7

ENDIF STATEMENT

The ENDIF statement terminates a skip initiated by a SKIP, IFE, or ELSE statement.

In all cases, the label string on the ENDIF statement must match the label string on
the statement that initiates the skip. If CCL encounters an ENDIF statement with a non-
matching label string, it ignores that statement.

The format of the ENDIF statement is:
ENDIF, 1s.

ls Label string; 1 to 10 alphanumeric characters beginning with an alphabetic
character.

Example:

When the SKIP statement in the following sequence of control statements is processed,
control skips to ENDIF, LABELI1, and none of the control statements between these two
statements are processed.

SKIP(LABEL1)

any sequence of
control statements

ENDIF (LABEL1)

IFE STATEMENT

The IFE statement conditionally initiates the skipping of a group of succeeding state-
ments. The condition is the true or false value of an expression within the IFE state-
ment. If the expression is true, control passes to the next statement; if the expression
is false, control skips to a terminating statement with a label string matching the label
string specified in the IFE statement. The terminating statement must be either an
ENDIF or an ELSE. If neither an ENDIF nor an ELSE statement with a matching label is
found, all the remaining statements are skipped.

The format of the IFE statement is:

IFE, exp, ls.
exp A CCL expression. The separator following exp must be a comma.
ls Label string; 1 to 10 alphanumeric characters beginning with an

alphabetic character,

1-4-8 60435400 J

Example:

The following control statements initiate the compilation and execution of a FORTRAN pro-
gram and then test for any errors during execution. If an error was made, the error code
is displayed. (The DISPLAY statement is explained later in this section.)

FTN, I=IFTST.
SET(EF=0) INITIALIZE ERROR FLAG
NOEXIT.

LGO.

ONEXIT.

IFE,EF.NE.O,LABL1.

DISPLAY(EF)

ENDIF,LABL1.

If the program executed without error, the error flag (EF) equals zero. In this case,
control passes to the ENDIF, LABL1 statement. If an error occurs, the error flag register
(EF) does not equal zero, the statement is true, and control passes to the next statement;
CCL then displays the error code in the error flag register.

In the following sample dayfile segment resulting from processing of the above statements,
the FORTRAN program attempted to call a subroutine BETA which did not exist (outside the
field length of the job).

16.30.35.FTN,I=IFTST.

16.30.36. .052 CP SECONDS COMPILATION TIME
16.30.36.SET(EF=0) INITIALIZE ERROR FLAG
16.30.37.NOEXIT.

16.30.37.LGO.

16.30. 38. NON-FATAL LOADER ERRORS -
16.30.38. UNSATISFIED EXTERNAL REF -- BETA
16.30.38. CPU ERROR EXIT 01 AT 404254,
16.30.38.0NEXIT.
16.30.38.IFE,EF.NE.O,LABL1.
16.30.38.DISPLAY(EF)

16.30.38. 1 1B

16.30.38.ENDIF,LABL1.

ELSE STATEMENT

The ELSE statement acts the same as a SKIP statement unless it is placed after an IFE state-
ment. Neither a SKIP nor an ELSE statement terminates skipping initiated by another SKIP
or ELSE statement, If an ELSE statement follows an IFE statement, four possibilities of
skipping can occur., These are:

] The ELSE statement has the same label as the IFE statement, and the expression
in the IFE statement is true. In this case, all statements following the IFE state-
ment up to the ELSE statement are processed. The ELSE statement then initiates
a skip to the ENDIF statement with a matching label.

60435400 J 1-4-9 e

° The ELSE statement has the same label as the IFE statement, and the expression
in the IFE statement is false. In this case, control skips to the ELSE statement
and then continues processing. The ENDIF statement is ignored.

e The ELSE statement has a different label from the IFE statement, and the expres-
sion in the IFE statement is true. In this case, all statements following the IFE
statement up to the ELSE statement are processed. The ELSE statement then
initiates a skip to the ENDIF statement with a label matching that of the ELSE
statement,

® The ELSE statement has a different label from the IFE statement, and the expres-
sion in the IFE statement is false. In this case, conirol skips to the ENDIF state-
ment that has a label matching that of the IFE statement.

The format of the ELSE statement is:

ELSE(ls)
ls Label string; 1 to 10 alphanumeric characters beginning with an alphabetic
Ao na adan
Example:

The following control statements test a file named TEST1 to determine if it is local to the
job. (Testing with the FILE function is explained later in this section.) If the file is local,
it is copied to the OUTPUT file; if it is not, it is assumed to be an indirect access perma-
nent file, and a local copy is obtained and copied to OUTPUT.

If the test shows the file is local, each succeeding statement is processed up to the ELSE
statement, which initiates a skip to the ENDIF statement. If the test shows the file is not
local, control skips to the ELSE statement and each succeeding statement after the ELSE
statement is processed.

IFE,FILE(TEST1,L0),LABEL1.
COPYSBF(TEST1,0UTPUT)
ELSE(LABEL1)

GET(TEST1)
COPYSBF(TEST1,0UTPUT)
ENDIF(LABEL1)

The following sample segment of a dayfile results when the above control statements are
processed and TEST1 is not initially a local file.

11.33.00.IFE,FILE(TEST1,L0),LABFL1.
11.33.00.FLSE(LAREL1)
11.33.00.GET(TEST1)
11.33.00.COPYSBF(TEST1,0UTPUT)

11.33.01. END OF INFORMATION ENCOUNTERED.
11.33.01.ENDIF(LABEL1)

The following sample segment of a dayfile results when the above control statements are
processed and TEST1 is initially a local file,

15.40.19.IFE,FILE(TEST1,L0O),LABEL1.
15.40.19.COPYSBF(TEST1,0UTPUT)

15.40.21. END OF INFORMATION ENCOUNTERED.
15.40.21.ELSE(LABEL 1)
15.40.21.ENDIF(LABEL1)

1-4-10 60435400 J

ITERATIVE STATEMENTS (WHILE AND ENDW)

The CCL iterative statements WHILE and ENDW bracket a group of control statements into
a loop that can be repeatedly processed. The beginning of the loop is identified by a WHILE
statement and the end by an ENDW statement. The ENDW statement must have a label
string that matches the label string specified on the WHILE statement. The loop is repeated
as long as the expression in the WHILE statement is true. If the expression is never true,
control immediately skips to the ENDW statement; if no ENDW statement is found, all the
remaining statements in the control statement record are skipped.

Label strings of all WHILE statements within the control statement record of a job should
be unique. Duplication of a label string within a control statement record or within a proce-
dure can produce unpredictable results. The same label string can be used in a called
procedure and in the calling control statement record or procedure.
The formats of the WHILE and ENDW statements are:
WHILE, exp, 1s.
ENDW, ls.
exp A CCL expression. The separator following exp must be a comma.
is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic
character. : ,
.Example: ; —
The following control statements initiate a loop wuw. ‘, "~ repeated five times,

SET(R2:5)
WHILE,R1.LT.R2,FINISH,
SET{R1zR1e1)
DISPLAY(R1)

*

ENIM, FINISH.

The user can vary the number of repetitions by setting different values in R2. (The
SET and DISPLAY statements are explained later in this section,) .

60435400 J 1-4-11

ADDITIONAL CCL STATEMENTS

SET STATEMENT

The SET statement enables the-user to set the value of the following special CCL
symbolic names.

Name Description

R1 Contents of control register R1.

R2 Contents of control register R2.

R3 Contents of control register R3.

R1G Contents of global control register 1.
EF Error flag.

EFG Global error flag.

DSC Dayfile skipped control statement flag.

The SET statement format is:
SET(sym=exp)
sym One of the symbolic names listed above.
exp A CCL expression.

The CCL symbolic names R1, R2, R3, and R1G reference software registers which are
initially zero. Only the user can set values in these registers by using an expression

in the SET statement. The expression is evaluated and stored as an 18-bit, signed
integer. 1If the expression is too large, it is truncated (retaining the sign, if signed),
and no error message is issued,

The values that the user sets in these registers are available to procedures existing apart
from the control statement record. (Procedures are described later in this section.)

Values set in the R1, R2, and R3 registers can be used by a called procedure, but when
control returns to the caller, CCL sets R1, R2, and R3 to their values before the call.
For example, PROC1 sets R1 to 1 and then calls PROC2. PROC?2 sets Rl to 2 and returns
to PROC1. R1 returns to its former value of 1.

A value set in the global control register, R1G, is available not only to the procedure but
remains in the register when control returns to the caller.

The error flags, EF and EFG, are 6-bit, unsigned quantities initially set to zero. Either
the user or CCL can change their values. Usually CCL sets the flags to error codes. It
sets EF whenever an error is generated during job or procedure processing; it sets EFG
during procedure exiting if EFG is zero and an error is generated during procedure
processing.

1-4-12 80435400 J

If the user sets values in EF or EFG in the control statement record, these values are
available to all procedures called. If the user sets values in EF or EFG in a procedure,
only EFG retains the new value when control reverts from the procedure; EF returns to the
value it had before the procedure was called.

If CCL encounters an error in a procedure, it sets the appropriate error code in EF but not
in EFG. When control reverts, EF returns to its previous value. If EFG was zero when the
error occurred, it is set to the error code when control reverts; if EFG was nonzero when
the error was made, it retains its prior value,

For example, assume that EF and EFG are zero when PROC1 calls PROC2. In PROC2, an
error occurs and EF is set to the appropriate error code. When control reverts to PROC1,
EF is set to zero and EFG is set to the error code of the PROC2 error.

The CCL range of values for EF and EFG are system-defined numerical values for the
following special symbolic names.

Decimal
Symbol Value Description
ARE 1 - Arithmetic error
CPE 4 CPU abort
ECE 15 ECS parity error
FLE 7 File limit error
FSE 10 Forced error
MNE 5 Monitor call error
MSE 8 Mass storage error
(equivalent to track limit)
ODE 11 Operator drop
OKE 13 Operator kill drop
ORE 18 Override error
PEE 16 CPU parity error exit
PPE 3 PPU abort
PSE 2 Program stop error
RRE 12 Job rerun
SRE 9 SRU limit error
SSE 14 Subsystem abort
SYE 17 System abort
TKE 8 Track limit
TLE 6 Time limit error

60435400 J 1-4-13

Examples:

The following procedure file with three procedures is an indirect access permanent file
with the name SETFILE.

.PROC,P1.
DISPLAY(R1)
DISPLAY(R1G)
SET(R1=9)
SET(R1G=888)
end-of-record .
.PROC,P2.
GET(ABC)
DISPLAY(EF)
DISPLAY(EFG)
end-of-record
.PROC, P3.

GET(BASIC1)
BASIC,

parr e B Y

DISPLAY(EF)
DISPLAY(EFG)
end=-of-record
end-of-file

The following control statements set and display registers R1 and R1G. A procedure
ig called which displays these registers, resets them, and then reverts tothe control
statement record where they are again displayed.

SET(R1=1)
SET(R1G=10)
DISPLAY(R1)
DISPLAY(R1G)
BEGIN,P1,SETFILE.
DISPLAY(R1)
DISPLAY(R1G)

The following is a sample dayfile segment resulting from processing of the above
control statements.

16.34.42,SET(R1=1)
16.34.42,SET(R1G=10)
16.34.43.DISPLAY(R1)
16.34.43. 1 1B
16.34.43.DISPLAY(R1G)
16.34.43, 10 12B
16.34.43.BEGIN,P1,SETFILE.
16.34.44 DISPLAY(R1)
16.34. 44, 1 1B
16.34.44 . DISPLAY(R1G)
16.34. 44, 10 12B
16.34.44, SET(R1=9)
16.34.44, SET(R1G=888)
16.34. 44, REVERT. CCL
16.34.44 DISPLAY(R1)
16,34, 44, 1 1B
16.34.45.DISPLAY(R1G)
16.34. 45, 888 1570B

1-4-14 60435400 F

The R1 and R1G registers retain their setting when the procedure is called. However,
after new values are set in the procedure and control reverts to the control statement
record, Rl returns to its previous value and R1G retains the value set in the procedure.

The following control statements set values in the error flags EF and EFG and then call
a procedure which attempts to access an indirect access permanent file. Control
reverts to the control statement record where EF and EFG are displayed to see if any
error code generated is returned via these flags.

NOEXIT.
SET(EF=10)
SET(EFG=20)
DISPLAY (EF)
DISPLAY(EFG)
BEGIN,P2,SETFILE.
DISPLAY (EF)
DISPLAY(EFG)

The following sample dayfile segment results when the above statements are processed.

16.43.35.NOEXIT.
16.43.35.SET(EF=10)
16.43.35.SET(EFG=20)
16.43.35.DISPLAY (EF)
16.43.35. 10 12B
16.43.35.DISPLAY (EFG)
16.43.35. 20 24B
16.43.35.BEGIN, P2,SETFILE.
16.43.36.GET(ARC)
16.43.36. ABC NOT FOUND, AT 000121,
16.43.36.DISPLAY (EF)
16.43.36. 3 3B
16.43.36.DISPLAY (EFG)
16.43.36. 20 24B
16.43.36.REVERT. CCL
16.43.37.DISPLAY (EF)
16.43.37. 10 12B
16.43.37.DISPLAY (EFG)
16.43.37. 20 2uB

The procedure attempts to get a permanent file which does not exist. This changes EF
to the error code 3. It does not affect EFG. Control reverts to the control statement
record and displays EF and EFG. EF returns to its initial setting; EFG remains
unchanged throughout.

To return the error code generated in a procedure to the control statement record,
EFG must be zero before there is an exit from the procedure. This is demonstrated
by the following control statements,

NOEXIT.
SET(EF=10)
BEGIN,P3,SETFILE.
DISPLAY(EF)
DISPLAY (EFG)

60435400 F 1-4-15

A sample dayfile segment resulting frem processing of the above statements shows how
the error code is returned,

09.42.52.NOEXIT.

09.42.52.BEGIN, P3, SETFILE.
09.42.53.GET(BASIC1) _
09.42.55.BASIC.

09.42.56. INPUT FILE EMPTY OR MISPOSITIONED
09.42.56.DISPLAY(EF) .
09.42.56. y 4B

09.42.57.DISPLAY(EFG)

09.42.57. 0 OB

09.42.57.REVERT. CCL

09.42.58.DISPLAY(EF)

09.42.58. 10 12B
09.42.58.DISPLAY(EFG)

09.42.58. 4 4B

The procedure attempts to compile a BASIC program that is not an INPUT record.
This generates an error code of 4 in EF but does not affect EFG while control is still
within the procedure. When control reverts to the control statement record, EF
returns to its original sefting, and the error code of 4 is set in EFG.

The symbolic name DSC (dayfile skipped control statement flag) is initially zero.
Under this condition, statements that are skipped during processing are not written in
the dayfile, If the user sets DSC to 1, all skipped statements are written in the
dayfile with two leading periods added to each statement skipped. The user can
alternately set DSC to 0 and 1 any number of times. Some CCL error processing
routines set DSC to 1 and force skipped statements to be written in the dayfile,

Example:
The following control statements demonstrate the effect of DSC=0 and DSC=1.

SET(DSC=0)

SKIP(LABL1)

COMMENT. SINCE THE DAYFILE SKIP
COMMENT. CONTROL IS SET TO ZERO,
COMMENT. THESE STATEMENTS WILL NOT
COMMENT. APPEAR IN THE DAYFILE.
ENDIF(LABL1)

SET(DSC=1)

SKIP(LABL2)

COMMENT. SINCE THE DAYFILE SKIP
COMMENT. CONTROL IS NOW SET TO ONE,
COMMENT. THESE STATEMENTS WILL
COMMENT. APPEAR IN THE DAYFILE AND
COMMENT. EACH WILL BE FLAGGED
COMMENT. WITH TWO INITIAL PERIODS.
ENDIF(LABL2) ‘

1-4-16 60435400 F

The following is a sample dayfile segment resulting from processing of the preceding
control statements.

16.49.36.SET(DSC=0)

16.49,.36.SKIP(LABL1)

16.49.36.ENDIF(LABL1)

16.49.37.SKIP(LABL2)

16.49.37...COMMENT. SINCE THE DAYFILE SKIP
16.49.37...COMMENT. CONTROL IS NOW SET TO ONE,
16.49.37...COMMENT. THESE STATEMENTS WILL
16.49.37...COMMENT. APPEAR IN THE DAYFILE AND
16.49,37...COMMENT. EACH WILL BE FLAGGED
16.49.37...COMMENT. WITH TWO INITIAL PERIODS.
16.49.37.ENDIF(LABL2)

DISPLAY STATEMENT

The DISPLAY statement evaluates an expression and sends the result to the user day-
file in both decimal and octal integer formats. The largest decimal value which can

be displayed is 10 digits. If the value is larger than 10 digits, GT followed by
9999999999 is displayed. If the value is negative and larger than 10 digits, LT
followed by a minus and 9999599999 is displayed. In octal cgge, numbers as large as
20 digits can be displayed. For an expression larger than 2%° -1, zeros are displayed,.

The format of the DISPLAY statement is:
DISPLA Y{exp)

exp A CCL expression

60435400 F 1-4-17

Example:

The following sample dayfile shows several display operations,

15.14.59. DISPLAY(TIME)

15.14.59. 1514 27528
15.15.07.SET(R1=99)

15.15.21.SET(R2=901)

15.15.28.DISPLAY(R1)

15.15.28. 99 143B
15.15.38.DISPLAY(R14R2)

15.15.38. 1000 17508
15.15.47.DISPLAY(3/2)

15.15.47, 1 1B

15.16.04 . DISPLAY (2#%47)

15.16.04. GT 9999999999 4000000000000000B
15.16.15.DISPLAY (-2%*47)

15.16.15. LT -9999999999 -4000000000000000B
15.16.27.DISPLAY(2##48)

15.16.28. 0 0B
15.16.41.DISPLAY(99999999999)

15.16.41. CCL156- STRING TOO LONG - 99999999999

The first DISPLAY statement displays the value of the TIME symbolic name. The
current time given is in the form hhmm. The next six lines demonstrate the use of the
R1 and R2 symbolic names. The other DISPLAY statements specify numeric expres-
sions. The integer constant in the final DISPLAY statement has more than 10 digits,
resulting in an error message.

FUNCTIONS

Functions are available for use as expressions or parts of expressions in CCL state-
ments. These functions are not statements in themselves but must be part of a CCL
statement. The CCL functions are FILE, DT, NUM, and SS.

FILE FUNCTION
The FILE function determines the attributes of a file assigned to the job.

The format of the FILE function is:

FILE(ifn, exp)
1fn Name of the file for which attributes are being determined.
exp) An expression consisting of operators and special FILE symbolic

names, which is evaluated as TRUE or FALSE for file Ifn.

1-4-18 60435400 J

The parentheses and comma must be used exactly as shown in the format. The
expression within a FILE function cannot include the NUM function, the SS function, or
another FILE function; only the DT function or the following symbolic names can be
used within the expression. Any other symbolic name within the expression is treated
either as an implicit DT function (refer to the description of DT following) or as an
unidentified variable.

Symbolic Name Description

(AS File is assigned or attached to the user's control point.

BOI File is positioned at BOIL, This is valid only for a file on mass
storage.

EOF The last operation was a forward operation which encountered
an EOF and is now positioned at that EOF.

EOCIL The last operation was a forward operation which encountered
an EOI and is now positioned at that EOIL.

EQ Equipment number where file exists.

EX File is execute only.

ID File ID value,

IN File is an input file type.

LB File is a tape which is labeled.

LI File is a library file type.

LO File is local file type.

MD File has modify permission.

MS File is on mass storage.

oP File is opened.

PH File is a pur;ch file type.

PM File is direct access permanent file type.

PR File is a print file type.

PT File is a primary terminal file type.

RA File has read and allow append permission.

RD File has read permission.

RM File has read and allow modify permission.

TP File is on magnetic tape.

TT File is assigned to terminal.

WR File has write permission.

60435400 F 1-4-19

Example:

The following sample segment from a dayfile shows the FILE function being used inside a
DISPLAY statement to determine if a specified file is at BOI.

15.50.09.GET (ACCT)
15.50.09.DISPLAY(FILE(ACCT,BOI))
15.50.09. 1 1B
15.50.09.COPYBR (ACCT, ITEM)
15.50.09. COPY COMPLETE.
15.50.09 . DISPLAY(FILE (ACCT,BOI))
15.50.09. 0 0B

DT FUNCTION

The DT function determines’the device type on which a file resides. DT can be used only
within the expression of a FILE function. The value of the DT function is true if the
2-character mnemonic included in the function is equal to the 2-character device type. The
operating system defines the mnemonics.
The format of the DT function as used in the FILE function is:
FILE(lfr T(dt))
Ifn Name of the file for which device residence is being determined.

dt A 2-character mnemonic identifying the device, which may be any one
of the following:

Type Equipment

CP 415 Card Punch
CR 405 Card Reader

DE Extended core storage
D1 844-21 Disk Storage Subsystem (half track)
DJ 844-4x Disk Storage Subsystem (half track)

DK 844-21 Disk Storage Subsystem (full track)
DL 844-4x Disk Storage Subsystem (full track)
DM 885 Disk Storage Subsystem (half track)
DP Distributive data path to ECS

DQ 885 Disk Storage Subsystem (full track)
LP Any line printer

LR 580-12 Line Printer
LS 580-16 Line Printer /
LT 580-20 Line Printer
MS Mass storage device

1-4-20 60435400 J

Type Equipment

MT Magnetic tape drive (7-track)
NE Null equipment

NT Magnetic tape drive (9-track)
TT Time-sharing terminal

NUM FUNCTION
The NUM function determines if a character string is numeric or not. It evaluates the

character string as true (1) if it is numeric or false (0) if it is not. NUM must be used as
an expression or as part of an expression in a CCL statement.

The format of the NUM function is:

NUM(ec)
c A character siring of 1 to 40 characters. If c is a literal
{(§-delimited), it is always nonnumeric.)
S§S FUNCTION
The SS function determines or sets the current subsystem bei.ngm' T *-—- a job. SS.must be

used as an expression or as part of an expression in a CCL statement.

The format of the SS function is: N
SS
or
SS=name
name’ Identifies one of the following subsystems:
ACCESS BATCH FORTRAN NULL
BASIC EXECUTE FTNTS TRANACTY |

The statement containing the SS function must end with a valid terminator. The SS function I
cannot be used in the FILE function., If it is, an error message (CCL152) is issued and the
job step aborts.

The SS function is intended for use at a time-sharing terminal to determine and set sub-

L il VAl &

systems by means of procedure calls.

t Not applicable to IAF.

60435400 J 1-4-21

PROCEDURES

A procedure is a group of control statements which exist apart from the control statement
record of any job. (A procedure may include the time-sharing commands described in
appendix E.) The purpose of a procedure is to preserve a sequence of control statements
for access by a control statement record or another procedure.

A procedure is stored as a record on a file and is initiated in a job either by a CCL. BEGIN
statement or a call-by-name statement. This is similar to the way a program calls a sub-
routine. Several procedures can exist on one file and the file may be a local file, an
indirect access permanent file, or an attached direct access permanent file. A procedure
file can reside on magnetic tape as well as mass storage.

A CCL procedure should not include a CLEAR state-
ment or a NEW or OI.D statement without the ND
parameter. These statements return working files
required by CCL when it reverts to the previous
level within the job sequence of control statements.

STRUCTURE OF A PROCEDURE

A procedure consists of a procedure header statement and a procedure body. The procedure
header statement must be the first line in the procedure. It names the procedure and
identifies any formal keywords that can be used to transmit values to the procedure from the
call statement.

The procedure body contains all statements between the header statement and the end~of-
record or end-of-file. An informative error message is issued if the body does not contain
at least one control statement. All control statements, including CCL statements, are
legal within a procedure. The body can also include special procedure commands and data
(explained later in this section).

Although a line of a procedure file can contain 150 characters, CCL interprets only the

first 80 characters; it ignores characters 81 through 150. If there is no end-of-line indica-
tor in the first 150 characters, CCL assumes that a new line begins at character 151. If the
new line is not a legal CCL statement or command, it is interpreted as a control statement
error when executed.

PROCEDURE HEADER STATEMENT

A procedure header statement must begin with a period followed by the characters PROC.
The separators between parameters must be commas, and the header statement must be

terminated by a period. Unless the header statement contains an error, it is not printed
in the dayfile.

The format of the procedure header statement is:

. PROC, pname, PysPoseens Py

1-4-22 60435400 J

pname Name of the procedure; 1 to 7 alphanumeric characters. It can begin
with a numeric character,

P: Optional dummy parameters used in the body of the procedure. These
! dummy parameters are replaced by parameters on the procedure call
statement or by default values in the procedure header. The following

formats are legal. ‘

fk

fk=

fk=defaultl
fk=defaultl /default2
fk=/default2

fk means formal keyword, an identifier that can have meaning by itself
or in conjunction with other parameters. If the call statement specifies
for fk, a parameter value identical to fk, then defaultl is overridden and
default2 is used if specified on the header (refer to Keyword Substitution
in this section). :

The formal keyword fk can be 1 to 10 alphanumeric characters. Any one of the defaults

can be 1 to 40 characters. fk and/or the defaults can be $-delimited character strings. If
a default is a $-delimited character string, it can contain special characters. fk can never
contain special characters. The maximum number of keyword specifications in a procedure
header statement is an installation-defined parameter, The default is 50.

Keywords can designate numeric values, variables, and file names. These appear as
operands in the body of the procedure. When CCL calls a procedure, it searches the
procedure body for any formal keywords declared on the header statement. . 7 on
occurs when CCL replaces formal keywords in the procedure body with default values from
the header statement or values from the call statement. The parameters on the call state-

ment determine which values replace the formal keywords.

Two special defaults can be used in a procedure header statement to identify a data récord or
a data file to be referenced by the procedure. These defaults are specified with a formal
keyword as follows:

fk==FILE
fk==DATA

The equivalence character (=) is the pound character (#) in ASCII. Like any other defaults
in the header statement, these two can be overridden by specifications in a procedure call
statement. (Use of defaults is explained in Keyword Substitution later in this section.)

The default specification fk==FILE in a procedure header statement associates the name
specified by fk with the record that immediately follows the procedure in the same file, The
user can place data in this record and reference it in the procedure with statements that
include the name given to fk.

An example that illustrates procedure access of a data record is outlined in figure 1-4-1.

The left side of the figure shows a file PROFIL1 with two procedures. The second procedure
contains an FTN statement that gets its input from a record on a separate file INFILE. The
right side of the figure shows the same operation with the FTN input coming from an addition-
al record on the same file, PROFIL2. This additional record is the default referenced by
=FILE, (Use of the BEGIN statement and keyword substitution is explained later in this
section.,)

60435400 J 1-4-23

pPJa029Y ®BJRQ ® JO SS900Y 2JNPOV0OIAL ‘[-P-] 9InTF1q

60435400 F

inejeQ InoyIIm

linejog YM a _

‘Z11404d'Za'NID38 ‘3H4NI’LTI40Hd L8'NID38

jusuiglels jOILOD

JUBWISLEIS |O1IUO0D
8yl yum pejepius si'Lg‘einpeaosd puodas eyl jo Busssasorg

ey} yum pareniul si'zg einpesord puodas eyl jo Buissesosy

<11d04d

L7140Hd

3 A 3114NI vo
pols nEoﬂ._.un n.“ piodsas ajbuis
weifosd esinog

o{1}-J0-pus
P10904-30-pue ERIEL
€71404d jo
N1d Ag pa0301 38R
pejidwiod eq 03 pue payjy
wesbosd esinog
o114-30-pue
pi028s-jJ0-pus p10201-j0-pup
‘097 £7140ud jo , | [r11d0ud Jo
P ‘Ld=I'N1Ld | { piooes puoses —>p (3M41=1)NLd piogas 58|
: (37141)139 | | PU® puodes
" 391d==14'29'004d" '37141°19°004d"
pi0201-j0-pus pi0291-J0-pue
('3713d)49SAd0D Z140Md 10 ('3714d)489SAd0D L1140Hd o
(3T1dd)HOVLLY pi03aea 18414 (374d) 139 pi02as sy
‘37144°2V' 00U’ ERIELRA ZeTe} P

24

.

The user can format a data file within the procedure itself using CCL procedure commands
(refer to Procedure Commands). When the procedure is called, this formatted data is
written on a separate file which the procedure can reference. When the user formats this
data file, he can name it or accept the system default. In the case of the default, the
procedure references the data file via an fk==DATA keyword specification in the header
statement and the inclusion of fk in a subsequent statement.

PROCEDURE BODY

The procedure body consists of all the statements between the procedure header state-
ment and the end-of-record. These statements can be control statements, CCL state-
ments (including calls to other procedures), and CCL procedure commands. The param-
eters in these statements can be a mixture of values defined in the procedure body and
keywords defined in the procedure header statement. When the procedure is called,
substitutions are made for the keywords, and the procedure body becomes the con-

trol statement record until a REVERT is encountered (substitution and the REVERT
statement are explained later in this section).

= (# in ASCII) can be placed immediately before a keyword in a procedure statement to
inhibit substitution in that keyword. If two such characters (==) are placed immediately
before a keyword, substitution takes place and one = is retained. If a single = is used
with a nonkeyword, it has a null effect since no substitution takes place anyway. If==
is used before such a parameter, one = is retained. The = does not affect a separator.

The right arrow (—) is the underline character (.) in ASCII. It can be used in a
procedure statement to make a preliminary separation of two parameters {(keyword or
nonkeyword). After possible substitutions are made, the two parameters are joined
into one. An = before a — retains the — and allo: ' “*‘tution., A = before an=
does not affect the inhibiting action of the=. ‘

Representative alterations of parameters in a procedure body by use of an = and a -
are shown in table 1-4-2,

60435400 J 1-4-25

TABLE 1-4-2. ALTERATIONS OF PARAMETERS IN A PROCEDURE
BODY BY USE OF = AND —

Call statement: BEGIN, APROC, APROCFL.

Procedure header: ,PROC, APROC, FK1=X, FK2=Y.

Procedure Parameters Procedure Parameters
Before - After
Substitution Substitution Comment
=FK1, FK1 FK1,X = inhibits substitution in a keyword
1,J I,J that immediately follows,
FK1=FK2 XFK2
I=J 1J
==FK1, FK1 =X, X == allow substitution if a keyword
==[,J =1,J i_mmediately follows and retains one
==FKi=FK2 sX=Y = -
FKl=s, FK1 X, X = does not affect a separator.
FK1—-FK2 XY The — separates two parameters
—-J 1J before substitutions are made; after
FK1—J XJ all substitutions are made, they
I-FK2 1Y are joined into one parameter.
=—FK1, FK1 —-X X An = before a — retains the — and
=—-=FK1=FK2 - —X=Y allows substitution.
FK1--=FK1 XFK1 A — before an = does not affect the
inhibiting action of the = ,

PROCEDURE COMMANDS
Procedure commands enable the user to format a data file within a procedure and to insert
documentary comments within a procedure. The commands are in fixed format with a

period in column 1 and the command name beginning in column 2. A terminator must not
be used, and nothing else can appear on the same line except the format specifications.

.DATA Command
A .DATA command in a procedure specifies the beginning of a sequence of data statements
that are written on a separate file when the procedure is called. This data file includes all
the statements, data, and file marks generated by CCL commands up to one of the following.
e Another .DATA command. |
e A system end-of-record (not an , EOR command).

® A system end-of-file (not an . EOF command).

e A system end-of-information.

1-4-28 60435400 J

<

The data file does not include the . DATA command. Parameter substitution continues
within the data statements. .

The procedure can reference this separate data file with either a user-given name or the
default =DATA. The default =DATA refers to a temporary file ZZCCLAx, =DATA is
equated to a formal keyword in the procedure header. All statements that refer to the data

file specify the formal keyword.

The formats of the . DATA command are:
.DATA
.DATA,1fn

The first format writes the data statements on the default file. The second writes the data
statements on the file Ifn, If Ifn already exists, it is returned, and a new file is created.
Hence, the .DATA command cannot add data to an existing file, After the data file is

written, it is automatically rewound.

Example:

The following procedure file is an indirect access permanent file called DATAFIL.

.PROC, ALPHA, P1==DATA, X=F TNOUT.
FTN(I=P1,L=X)
LGO.
REPLACE (X=LISTFIL)
.DATA
PROGRAM TEST(OUTPUT)

FORTRAN source
program
L
[]

END

This procedure file is accessed with the following call statement in a control statement
record of the job.

BEGIN, ALPBHA, DATAFIL.
A sample of a resulting dayfile is:

09.29.09.BEGIN,ALPHA,DATAFIL.
09.29.10.FTN(I=ZZCCLAA,L=FTNOUT)
09.29.11. .047 CP SECONDS COMPILA
09.29.11.LGO. .

09.29.14, STOP

09.29.14. .038 CP SECONDS EXECUTION TIME
09.29.14 . REPLACE(FTNOUT=LISTFIL)

09.29.14,.REVERT.CCL

N

All input after the .DATA command (the FORTRAN source program) is written onto the
default temporary file ZZCCLAA.

60435400 J 1-4-27

.EOR Command

The . EOR command is used to separate records in a data file originating in a procedure.
Whenever an .EOR is placed, an actual end-of-record is recorded when the data file is
written on =DATA or lfn. Since the data statements are written on an external file, the
.EOR command has no effect on the system end-of-record that terminates the procedure.
The .EOR command is valid only after a .DATA command.

.EOF Command

The . EOF command generates an end-of-file on the data file originating in a procedure.
An actual end-of-file is recorded when the data statements are written on =DATA or
lfn. This command has no effect on the end-of-record that terminates the procedure.
If the end of the data file format is also the end of the procedure, no . EOF command
is needed. In this case, an end-of-record mark is added. If the user wants an end-
of-file mark, he must include an . EOF command. The .EOF command is valid only
after a .DATA command.

.* Command

The .* command enables the user to document a procedure with internal comments.
These comments appear when the file is copied to output or displayed at a terminal;
they do not appear in the dayfile when the procedure is processed. ‘The comment,
which follows the *, can contain any combination of characters.

An example of a data file written from a procedure on a named file is shown in
figure 1-4-2.

PROCEDURE CALL AND EXIT

A job can call a procedure with the CCL. BEGIN statement. The call inserts the procedure
in the control statement record of the job following the BEGIN. The end of the procedure
is signaled by the REVERT statement which CCL or the user supplies,

Figure 1-4-3 outlines the calling of a procedure from a job. Once a procedure has been

called, it in turn can call a second procedure. The calling of a second procedure by a
first procedure is outlined in figure 1-4-4,

BEGIN Statement

The formats of the BEGIN statement are:
BEGIN, pname, pfile, Py>Pgse 5Py
BEGIN, , pfile, p;, Py, ..., .
pname, Py, Py, - - ., Py

pname The procedure name as declared on the header statement. This
is a positional parameter.

1-4-28 60435400 J

One
record
on PFILE3

Next
record
on PFILE3

Figure 1-4-2.

60435400 J

4

PFILE3

PROC.A.

DATA,DFILE

Data for
first record

.EOR

Data for
second record

.EOF

Data for
third record

DFILE

First data record

end-of-record

end-of-record

PROC,B.

end-of-record

When procedure A is calied, l
the data is written on a local
file named DFILE

Second data record

end-of-record
end-of-file

Third data record

end-of-record
end-of-information

Data File Written from a Procedure on a2 Named File

1-4-29 o

1-4-30

JOBFILE

JOBCARD

PROCEDURE

Figure 1-4-3.

JOBFILE

/'
\

«PROC

L]
REVERT
7/8/9

Calling a Procedure from a Job

FIRST SECOND
PROCEDURE PROCEDURE
« PROC
[]
[]
* —>| ¢ PROC
BEGIN .
® [
[J
L] ®
REVERT \\"“-\~ REVERT
7/8/9 —— 7/8/9

Figure 1-4-4, Calling a Procedure from Another Procedure

60435400 J

pfile The name of the file on which pname is located. When the
BEGIN statement is processed, CCL:looks for a local file with
the name pfile. Failing in this, it looks for an indirect access
permanent file with that name and gets a local copy. If pfile
is a direct access permanent file, the user must attach it to the
job before the BEGIN statement is processed. This is a
positional parameter,

p; Parameters that can be any of the following forms.

‘fk A formal keyword that is the same as a keyword used
in the procedure header statement.

fk= Specifies null substitution for the formal keyword fk
which appears in the procedure header statement.

v 1- to 40-character symbol or value that does not
match any keyword in the procedure header. The
symbol or value is positionally equated to a keyword
in the header statement. Nonalphanumeric charac-
ters (other than /) must be within a literal
($~-delimited).

fk=v The value v is substituted for the formal keyword, fk,
which appears in the procedure header statement.

In all forms, the first separator can be a comma or a left parenthesis; the remaining
separators must be commas, The terminator can be a period or a right parenthesis,

The second format uses the default procedure name which is the record at the current
position of pfile, If this default is used and the file is at end-of-information, CCL
rewinds pfile and calls the first procedure. An exception is the case where the pro-
cedure file is the INPUT file,

The first or second format can use the default for the file name which the installation
defines (PROCFIL is the default). If pfile is specified, CCL searches for a local file
with that name. Failing that, it issues a GET request to obtain a local copy of an
indirect access permanent file with that name.

The third form is used to.call a local file or a procedure in the system library. 1In

this case, the procedure name must be the same as the name of the file on which it
resides. ‘

In the keyword specification fk=v, the parameter v is a user-supplied name or value
that is substituted in the procedure wherever the keyword fk occurs. Special versions
of this specification enable the user to substitute either the current numerical values of

any of the symbolic names listed in table 1-4-1 or a boolean value. These special
versions are:

fk=sym
fk=sym+
fk=sym+D
fk=sym+B

60435400 J 1-4-31

In the first form, sym is itself the numeric value which the user supplies. If the user
selects any of the symbolic names in table 1-4-1 for sym in this first form, -the name is
substituted and not the numerical value associated with that name. For the remaining
three forms with the plus symbol, any of the symbolic names listed in table 1-4-1 or a
boolean value can be used. (A user-supplied name with a plus is flagged as an error.)
These plus forms substitute the current numerical value associated with the symbolic
name and not the name itself, The +D and +B specify decimal and octal evaluations.

The following demonstration procedure is accessed by a sequence of calling statements
in the control statement record of the job.

.PROC,TEST1,FK.
COMMENT. FK

The resulting dayfile shows each calling statement and the evaluations made. The
relevant segment of the dayfile is as follows: :

16.00.44.BEGIN,TEST1,FKTEST,FK=20.
16.00.45, COMMENT. 20
16.00.45,REVERT. CCL :
16.00.46 .BEGIN, TEST1,FKTEST, FK=PNL.
16.00. 47 .COMMENT. PNL

16.00.47 .REVERT.CCL

16.00.47 .BEGIN,TEST1,FKTEST, FK=PNL+.
16.00.48.COMMENT. 1

16.00.49 ,REVERT.CCL
16.00.50.SET(R1=10)

16.00.50.BEGIN, TEST1,FKTEST,FK=R1.
16.00.51.COMMENT. !
16.00.52.REVERT.CCL e
16.00.52.BEGIN, TEST1,FKTEST,FK=R1+.
16.00.53.COMMENT. 10
16.00.53.REVERT.CCL
16.00.53.SET(R2=100)
16.00.54.BEGIN,TEST1,FKTEST,FK=R2+.
16.00.54 . COMMENT. 100
16.00.55.REVERT.CCL
16.00.55.SET(R3=1000)
16.00.56.BEGIN, TEST1,FKTEST,FK=R3+D.
16.00.58.COMMENT. 1000

16.00.59.REVERT.CCL
16.00.59 .BEGIN,TEST1,FKTEST,FK=R3+B.
16.01.00.COMMENT. 1750

16.01.00.REVERT.CCL

1-4-32 50435400 F

REVERT Statement

The REVERT statement terminates procedure processing. The formats are:

REVERT.comment
REVERT,ABORT. comment

comment Character string appended after the statement terminator. This
comment is especially useful to the time-sharing user because, when
the REVERT statement is displayed at the terminal, following pro-
cedure processing, the comment can inform-the user as to how the
procedure reverted.

The REVERT statement returns control to the statement following the BEGIN statement
that called the procedure. The REVERT,ABORT statement sets the error flag EF =CPE
(CPU abort). Unless a NOEXIT has been processed, control goes to the next EXIT state-
ment in the control statement record (refer to Exit Processing in section 5).

CCL always appends the following control statements to a procedure record.

REVERT.CCL
EXIT.CCL
REVERT,ABORT.CCL

These statements terminate CCL processing if no user REVERT statements are processed,

Example:

The following procedure (REVTST) is on a file called PROCFL. It reverts to the job
calling it if the named file has no read permission and gives control to the job EXIT
statement if the named file has no read/modify permission.

.PROC,REVTST,LFN1,LFN2.
IFE,FILE(LFN1,RD),LABEL1.
TDUMP (I=LFN1)
ELSE(LABEL1)
REVERT.NO READ PERMISSION
ENDIF,LABEL1.
IFE,FILE(LFN1,RM),LABEL2.

COPY(LFN2,LFN1)

ELSE(LABEL2)

REVERT,ABORT. NO READ/MODIFY PERMISSION
ENDIF,LABEL2.

The following two jobs (REVJOB1 and REVJOB2) call the REVTST procedure. REVJOBI1
attaches an execute-only file; REVJOB2 attaches a read and/or execute file.

REVJOB1. REVJOB2.

USER(USERNUM, PASWD ,FAMNAME) USER(USERNUM,PASWD,FAMNAME)

CHARGE (CHARGNUM, PROJNUM) CHARGE (CHARGNUM,PROJNUM)
ATTACH(FILE1/UN=ALTUSER,PW=PW1,M=E) ATTACH(FILE2/UN=ALTUSER,PW=PW2,M=R)
BEGIN,REVTST,PROCFL,FILE1,XFIL. BEGIN,REVTST,PROCFL,FILE2,XFIL.
COMMENT. RETURNS HERE COMMENT. RETURNS HERE ,

EXIT. EXIT.

COMMENT. EXIT ON ERROR COMMENT. EXIT ON ERROR

60435400 F 1-4-33

The following are the dayfiles produced by REVJOB1 and REVJOB2. REVJOBI
processes the REVERT. statement and terminates normally., REVJOB2 processes

the REVERT,ABORT. statement and terminates via error processing.

10.09.51.REVJOB1.
10.09.51.USER (USERNUM, PASWD,, FAMNAME)
10.09.51. CHARGE (CHARGNUM, PROJNUM)
10.09.51. ATTACH(FILE1/UN=ALTUSER, PW= , M=E)
10.09.52. BEGIN, REVTST, PROCFL , FILE1, XFIL.
10.09.53.IFE,FILE(FILE1,RD),LABEL1.
10.09.53.ELSE (LABEL1)

10.09.53.REVERT. NG READ PERMISSION
10.09.53.COMMENT. RETURNS HERE

10.09.54 . EXIT.
10.09.54 ,UEAD, 0.002KUNS.
10.09.54 . UEPF, 0.020KUNS.
10.09.54 . UEMS, 0.229KUNS.
10.09.54 . UECP, 0.049SECS.
10.09.54, AESR, 2.078UNTS.
10.21.58.UCLP, 6233, 0. 128KLNS.

10.10.11.REVJOR2.,
10.10. 11.USER (USERNUM, PASWD, FAMNAME)
10.10. 11. CHARGE (CHARGNUM, PROJNUM)
10.10.11. ATTACH(FILE2/UN=ALTUSER, PW= , M=R)
10.10. 12.BEGIN, REVTST, PROCFL , FILE2, XFIL.
10.10. 14, IFE,FILE(FILE2, RD) , LABEL 1.
10.10. 14, TDUMP (I=FILE2)

10.10.14, TDUMP COMPLETE.

10.10. 14.ELSE (LABEL1)

10.10. 14, ENDIF,LABEL1.

10.10. 15.IFE,FILE(FILE2, RM) ,LABEL2.
10.10. 15, ELSE (LABEL2)
10.10.16.REVERT,ABORT. NO READ/MODIFY PERMISSION

10.10.16.EXIT.
10.10.16.COMMENT. EXIT ON ERROR
10.10.16.UEAD, 0.002KUNS.
10.10. 16.UEPF, 0.020KUNS.
10.10.16.UEMS, 0. 303KUNS.
10.10.16.UECP, 0.059SECS.
10.10.16.AESR, 2.103UNTS.
10.22.03.UCLP, 6233, 0.192KLNS.

1-4-34 60435400 F

KEYWORD SUBSTITUTION

Once the user has created a procedure, he specifies which keyword substitutions are
made in the procedure body each time it is called by the values he includes in the list
of the calling statement. When a call is made to a procedure, CCL compares the
formal keywords in the call statement with the formal keywords on the procedure header
statement. It then makes replacements in the procedure body either with default values
from the header statement or with values specified in the call statement. The user
should be aware that after substitutions are made.in the procedure body, it is possihle
that some control statements may be expanded beyond 80 characters. For most control
statements, this is flagged as an error. Exceptions are the ASSIGN, BLANK, LABEL,
REQUEST, and VSN statements which allow one continuation line. The parameters on
the call statement determine the values to be used as substitutions in the procedure
body. CCL statements can be split between two lines if the split is at a separator.

The basic options a user has in specifying substitutions in a procedure body are listed
in table 1-4-3. The user's choice is influenced by the mode in which formal keywords
in the calling statement list are processed. There are two modes in which CCL pro-
cesses these keywords, positional and equivalence. In positional mode, there is a
one-to-one serial matching of call statement keywords with keywords on the procedure
header statement to determine the substitutions to be made in the procedure body. In
equivalence mode, each call statement keyword is matched with the identical alpha-
numeric keyword in the procedure list regardless of its position in either list.

TABLE 1-4-3. BASIC SUBSTITUTIONS IN A PROCEDURE

Formal Keyword on '

" Procedure Header Parameter Substitutions in
Statement Procedure Bodyf
fk Null, v, fk
fk= Null, v, fk
fk=d Null, v, £k, d
fk=d1/d2 Null, v, di, d2

+ Definitions of substitutions available:

fk A formal keyword.

d A single default,

d1 The first of two defaults.
d2 The second of two defaults.

null The substitution for the keyword skipped.

v A value other than a keyword on the header statement.

60435400 J 1-4-35

Processing of the call statement list always begins in positional mode. The switch
from positional mode to equivalence mode can occur in two ways.

e An equivalence of the form fk= or fk=v appears in the call list. This initiates
equivalence mode for that position and all those following in the list,

e A double default of the form fk=defaultl/default2 appears in the procedure header
statement. The corresponding position in the call statement and all positions follow-
ing are processed in equivalence mode.

-

Once the switch has been made from positional to equivalence mode, processing remains in
that mode to the end of the list; there can be no return to positional mode in that call,

The permissible call statement parameters in positional mode are:

e A keyword identical to a keyword in the procedure header statement. This keyword
can be $-delimited.

e A value that does not match any keyword in the procedure header statement. This
value can be $-delimited.

e An omitted entry indicated by double commas or by the call list being shorter than
the procedure list.

In the first case, the call statement keyword overrides all procedure defaults except a
double default. For the double default, the second is used.

In the second case, the call statement value overrides all procedure defaults except a double
default. The double default is an error since it initiates equivalence mode in the corre-
sponding position of the call statement, andin that mode, the call cannot use a value that is
unidentified in the procedure header statement.

In the third case, the procedure defauits are used. This includes the first default of a
double default,

These substitutions are summarized in table 1-4-4.
The permissible call statement parameters in equivalence mode are:

o A keyword identical to a keyword in the procedure header statement. This keyword
can be $-delimited.

e A keyword identical to a keyword in the procedure header statement that is
equivalenced to null. This keyword can be $-delimited.

. A keyword identical to keyword in the procedure header statement that is
equivalenced to a value not in the header statement. This keyword can be
$-delimited.

e An omitted entry indicated by double commas or by the call list being shorter than
the procedure header list.

1-4-386 60435400 F

TABLE 1-4-4, KEYWORD SUBSTITUTION IN POSITIONAL MODE

Keyword on the BEGIN Statement

Procedure Header)

Statement Omit fk $1k$ v v
.PROC, , fk, fk fk fk v v
.PROC, , fk=, Null fk fk v v
. PROC, , fk=d. d Tk fk v v
.PROC, , fk=d1/d2. d1 d2 d2 Error Error
.PROC, , fk. rk fk tk | v v
. PROC, , fk=. Null fk fk | v v
.PROC, , fk=d. d fk | v v
.PROC, , fk=d1/d2. d1 dz dz2 Error Error

In the first case, the procedure header defaults are substituted.
the double default is used.

In the second case, the null string is substituted.

The second default of

In the third case, the value overrides all defaults in the procedure header statement.

In the fourth case, the procedure defaults are substituted.

double default is used.

These substitutions are summarized in table 1-4-5,

60435400 F

The first default of the

1-4-37

Examples:

TABLE 1-4-5. KEYWORD SUBSTITUTION IN EQUIVALENCE MODE

Keyword on the BEGIN Statement

fk fk= | fk=v v

Procedure Header or or or | or
Statement _omit fk | k= | rk=v vt

. PROC, , fk. fk fk Null v Error
. PROC, , fk=, Null Null Null v Error
. PROC, , fk=d. d d Null v Error
. PROC, , fk=d1/d2. d1 d2 Null v Error
.PROC, , fk. rk fk | Null v Error
.PROC, , fk-=. Null Null | Null |v Error
.PROC, , fk=d, d d Null |v Error
.PROC, , fk=d1/d2. d1 d2 Null |v Error

The following four examples match a calling statement with the header statement of the
procedure called. The parameters are spaced to illustrate positional correlation.

.PROC, AA,

. PROC, BB,

BEGIN, CC, PFILE

!
positional | equivalence
BEGIN, AA, PFILE, A, B, C,1Z=D,

W, X, v,lz
t

positional: equivalence
BEGIN, BB, PFILE, A, IX,

W,:X=A/B,
!

equivalence

"

. PROC, CC, W, X,

lequivalence

Y=C, Z=D.
Y, V4

Y, Z

W=4A, X=B, Y=C, Z=D.

BEGIN, DD, PFILE, lz=D, v=C, X=B, W=A.

. PROC, DD,

:w, X,

Y, 2Z

If the following statement were in each of the above procedures,

COMMENT. w X Y

it would,

zZ

in all four cases, read as follows after substitution.

COMMENT. A B C

l t Assumes the parameter is entered under equivalence mode.

1-4-38

D

60435400 J

The following sequence of BEGIN statements is included in the control statement record
of the job. These reference two files, SUBP and SUBE, that have procedures.

BEGIN, ,SUBP.

BEGIN, ,SUBP,P1,P2,P3,PL.

BEGIN, ,SUBP,B1,B2,B3.
BEGIN,,SUBP,P1=B1,P2=B2,P3=B3,P4=BY.
BEGIN, ,SUBE.

BEGIN, ,SUBE,P1,P2,P3,P4.

BEGIN, ,SUBE,P1=,P2=,P3=,Pl=,

BEGIN, ,SUBE,P1=S1,P2=52,P3=83,P4=S4.

The file SUBP is as follows:

.PROC, ,P1,P2=,P3=DEF,P4=DEF1/DEF2.
COMMENT. P1 P2 P3 Py

The file SUBE is as follows:

.PROC, ,P4=DEF1/DEF2,P1,P2=,P3=DEF.
COMMENT. P1 P2 P3 PY

The following is a segment of the dayfile that results when the BEGIN statements are
processed.

12.58.01.BEGIN, ,SUBP.

12.58.02.COMMENT. P1 DEF DEF1

12.58.02.REVERT.CCL

12.58.03.BEGIN, ,SUBP,P1,P2,P3,P4.
 12.58.04.COMMENT. P1 P2 P3 DEF2

12.58.04.REVERT.CCL

12.58.05.BEGIN, ,SUBP,B1,B2,B3.

12.58.06.COMMENT. B1 B2 B3 DEF1

12.58.06.REVERT.CCL

12.58.07.BEGIN, ,SUBP,P1=B1,P2=B2,P3=B3,P4=B4.

12.58.09.COMMENT. B1 B2 B3 BY

12.58.09.REVERT.CCL

12.58.10.BEGIN, ,SUBE.

12.58.13.COMMENT. P1 DEF DEF1

12.58.13.REVERT.CCL

12.58.14.BEGIN, ,SUBE,P1,P2,P3,P4,

12.58. 14, COMMENT. P1 DEF DEF2

12.58.14.REVERT.CCL

12.58.15.BEGIN, ,SUBE,P1=,P2=,P3=,P4=,

12.58.16.COMMENT.

12.58.16 .REVERT.CCL

12.58.76.BEGIN, ,SUBE,P1=S1,P2=82,P3=83,P4=S4,

12.58.17.COMMENT. S1 S2 S3 S -

12.58.19.REVERT.CCL

The substitutions made in a procedure that calls a second procedure is shown in figure
1-4-6. The resultant dayfile is shown on the right side of the figure.

60435400 J 1-4-39

83aNpad0ad OMJ, Ul UOIINJIISqng paIomLay -g-p-1 InJLg

T2 IHAAIYEL° 10" 9L

*dO¥a‘ AIAGNIEL L0 9L

100 IHIAIY EL L0 9L

*QIYIAINNOONT NOIIVWHOANI 40 dNI *€L°10°91
(LNdINO‘INIYd)AGSAdOD°EL 1091
(INI¥d)ONIMIY 2L L0 9L
*ININA‘2ITIAd‘ONILSIT NIDIA SL L0 9L
“do¥a‘0=44°34I°2L°10° 9L

dWIL NOILNDIXI SANODIS dO 8EQ® ‘LLTi0°9t
d0OLsS "LL*LoT9t

‘007T1°0L°LO0" 9L

IWIL NOILYVTIIdWOOD SANODIS dJ EnO° ‘0L°10°91

(INI¥d=TLWYDOYd=I)NLA'60°10° 9L
*INIHdLWYOOUd ‘131144 ‘ILNO3XTNIDILA 80" L0 91
(LWYD04d)L1AD°80° L0 91

dTIJIAVA LNVLTIASHY

(INdIno‘31141N0)44SKd0D
(3TI41L00)ANIMNIY
*LOO=FTIJ4LNO ONILSIT o0Ud”

A 11dd

*dO¥A JIANY

*LN0*23TI4d ‘ONILSIT NIDAd
*doY¥a‘o=43"341

‘0971

: (LNO=T IWYN=I)NLJ
"LOO'IWYN‘ILNOAXA D0Ud "

Td114ad

*INI¥d LWYDOHd 13TI4d3LN0AXT‘NIDAY
(LWYD0¥4)LAD

60435400 J

1-4-40

CONTROL STATEMENT PROCESSING 5

Jobs entering the system consist of one or more logical records. The first logical _record
contains system directives (control statements) which describe the processing that is to
occur in the job file (job deck). This section describes control statement processing and
how the control statements affect other aspects of job processing.

The operating system recognizes three types of control statements.

¢ T.ocal File Control Statements These statements call files that are assigned
to the job control point. LGO is the system
default local file used for retaining object
code generated by one of the language proc-
essors.

e System Control Statements These statements are divided into eight
categories.
Job control.control statements
File management control statements
Permanent file control statements

Load and dump central memory utility
control statements

Tape management control statements
System utility control statements
Library utility control statements
Loader control statements?
] Product Set Control Statements The product set control statements call the
various products available under NOS. Their
formats are given in the applicable product

reference manual and in the Applications
Programmer's Instant.

CONTROL STATEMENT FORMAT

All control statements may consist of one to four fields. The first field is the statement
label field. If present (the field is optional), it begins with a numeric character and

terminates with a separator character. The field is used only in conjunction with the system
control language described in appendix H.

T Refer to the CDC CYBER Loader Reference Manual.

60435400 J 1-5-1

The second field, also optional, is a $ or / prefix character which precedes the program
name., If a $ is present, it indicates that the specified program to be executed must be
loaded from the system library.T Therefore, even if a local file of the same name is
present, the system program, not the local program, is executed.

The / option may be used on local file control statement calls. If a / is present, it indicates
that the parameters following the program name are to be processed in the operating system
format. If a / is not present, the parameters are processed in product set format. The
default is product set format because most programs specified in local file calls have been
generated by one of the product set members. The / option does not apply for control state-
ment calls to programs residing on the system library. For those types of calls,
parameters are processed in the operating system format unless the SC directive to SYSEDIT
has been entered. Refer to the SYSEDIT control statement in the System Maintenance
Reference Manual for a description of the SC directive.

The third field contains the name of the program to be executed. The fourth field (optional)
contains parameters which further define the operation to be performed. The parameter
field is set off from the name field by a separator character. A valid terminator character
must follow the fourth field (or the third field if no parameters are present).

The system allows continuation lines for ASSIGN, BLANK, LABEL, REQUEST, and VSN
control statements. (For details, refer to Control Statement Rules in section 10.)

The following is a comparison of the operating system and product set formats (refer to
the Applications Programmer's Instant for control statements using the product set format).

Operating System Format - Product Set Format
1. Valid separators are 1. Same as for the operating system
. format,
+ - " / = (

and any other character with a display
code value greater than 448 except
*)$. and blank.

2. Valid terminators are 2. Same as for the operating system
format.
<)

3. Letters, numbers, and the * are 3. Any parameter field that includes
the only characters allowed in the characters other than letters,
parameter field., The one numbers, and the * must be ex-
exception to this rule is the use pressed as a literal.

of literals (that is, character
strings delimited by dollar signs).
Characters other than letters,
numbers, and the * can be in-
cluded in literals. No characters
within a literal have special
meanings; the system merely
checks the syntax of the literal.
The called program must do its
own processing of the literal.

Literals are allowed only on
equipment/file assignment
control statements and loader
control statements. '

1-5-2 60435400 J

Operating System Format

Product Set Format

4, All embedded blanks within a 4. All embedded blanks within a comtrol
control statement except those statement except those appearing in
appearing in literals are literals or after the program name
ignored. are ignored.

5. Comments may appear on the 5. Same as for the operating system
control statement but they must format.
follow the terminator. They
may contain any character.

Comments are not printed for
some control statements.
6. Parameters, separators, 6. Parameters are stored in their display

code equivalent beginning at RA+2.
Separators and terminators are stored

and terminators are stored
in the user's field length

beginning at RA+2, The as follows:
characters , . and) are stored
as zero. For all parameters Character Code (Octal)

and all valid separators except

the comma, their display code s 1
equivalent is stored. - 2
/ 3
(4
+ 5
- 6
H 10
) or. 17
Other valid 16
separators

7. File names are 1 to 7 alpha- 7. File names are 1 to 7 alphanumeric
numeric characters. characters. File names beginning
with a numeric character are illegal.
8. Not NOS/BE compatible 8. NOS/BE compatible

no parameter can contain more than 7 characters. If a parameter contains

In general,
the entire control statement is issued to the dayfile, followed

more than 7 characters,
by the message:

FORMAT ERROR ON CONTROL CARD.

There are two exceptions to this rule. If a statement calls a’program from the system
library that has an ARG= entry point, parameters in the statement can contain more than

7 characters. If a parameter contains more than 7 characters, the ARG= entry point is

not present, and the SDM= entry point is present (refer to appendix F in volume 3), the
statement name (such as DEFINE) is issued to the dayfile but all parameters are suppressed.

The parameters can appear in either order-dependent or order-independent format. Order-
dependent parameters are required when the parameters must be passed in a specific order.
An example of order-dependent parameters is:

RESEQ(MYFILE, B, , 20)

60435400 J

In this example, the system expects the resequencing increment to be passed as the fourth
parameter; therefore, a separator must be present for the parameter not specified.

Order-independent parameters may be passed in any order. This is made possible by the
use of keywords. Keywords are identifiers which have meaning either by themselves or
when used in conjunction with other parameters. Usually, keywords are passed with a
parameter and a separator. The separator must not be a comma. When the list of
parameters is passed to the called program, all separators except commas are also passed.

Some programs require specific separators (usually =), and others merely require that a
separator be present. Examples of keyword notation are:

. COBOL(I=SFILE, B=BFILE)

. COBOL(B=BFILE, I=SFILE)

. COBOL(L=0,A,F)

JOBX, T10, CM45000.

B W N -

In examples 1 and 2, both parameters and separators are passed to the COBOL compiler.
Since these parameters are order-independent, both statements produce the same result.

In example 3, two keywords are passed with no separator character or parameter. In
example 4, the keyword is the first character of the parameter.

The parameters and an image of the control statement being processed are written in the
job communication area. The job communication area is the first 110, words of the user's
field length, from RA through RA+1078. Appendix E in volume 2 describes the first 10()8
words of this area.

The following control statements produce the same image in CM. Both statements are
processed using operating system format.

123, PERMIT (FILEABC, USERAAA=R, USERBBB=W)
123, $PERMIT (FILEABC, USERAAA-=R, USERBBB=W)

JOB STATEMENT (JOB CARD)

The job statement (also known as the job card) names the job and may specify job processing
parameters. The first statement of a job input file must be a job statement. T

The user can issue the job statement in order-independent or order-dependent format.

In order-independent format, a separator character does not appear between the keyword
and its value. If the order-dependent format is used and parameter values are omitted
between separators, the parameter values are interpreted as zeros. A parameter value
containing an 8 or 9 must not have a B suffix. If there is a syntax error in the job state-
ment, the system issues an error message and terminates the job.

The job statement format is:

79 80

((fobname(Pp, TE, CMIL ECTe)§ { ¢ m
.l 79 80

(jobname(p, t, 1L, te) S § c m

T Not applicable to time-sharing jobs.

® 1-5-4 60435400 J

jobname Alphanumreric job name (1 to 7 characters) which must begin
with a letter. This name identifies the individual jobs being
run under the same user number. ‘

Pp Priority level (octal) at which the job enters the system,

or ranging from 1 to 17g. A value containing an 8 or 9 or the

P suffix D is interpreted as decimal. This parameter is not
used by NOS (refer to Job Scheduling in section 3).

Tt Central processor job step time limit in seconds. Values

or can range from 1 to 77777. Decimal is the default base.

Octal values from 1 to 77777, (1 to 32767) can be entered
if followed by a B suffix, The default limit is 64 (100g).
Decimal values from 32767 to 77777 set the time limi§ at its
maximum. The time limit set by this parameter must be
sufficient for completion of each of the steps in the job
(refer to Time Limit Control in section 3).

CMIfl Maximum octal field length for the job (refer to Field Length

or Control in section 3). The system rounds the value to the
fl next highest multiple of 100g. The field length cannot exceed:

3777008 on a 198K or a 262K machine
360000g on a 131K machine
1630008 on a 65K machine

A value containing an 8 or 9 or the suffix D is interpreted as

decimal.
ECfe Maximum octal number of 1000g word ECS blocks required
or by the job. This ECS field length cannot exceed 3777 blocks
fe or the amount of user ECS allowed by the installation. The

user job must request the ECS (refer to the RFL control
statement in section 8) before it can be used. A value
containing an 8 or 9 or the suffix D is interpreted as decimal.

cm Conversion mode entered in columns 79 and 80.T A 26
indicates that coded cards are to be converted in 026 mode;
29 indicates cards are converted in 029 mode. This initial
keypunch mode can be changed within the job by a conversion
change card (refer to Coded Cards in appendix F) when
reading cards or a ROUTE statement when punching cards.
If this parameter is omitted, the installation default keypunch
mode is used.

The system issues error messages when parameter specifications exceed validation limits.
It also issues an error message if an ECS field length is specified when the user's CM
validation limit is less than 10000g words. The user should consult installation personnel
for further installation restrictions based on the machine configuration and subsystems used.

t This conversion mode indicator is ineffective for remote batch jobs entered under
Export/Import or mode 4 RBF; it is effective for remote batch jobs entered under HASP
RBF.

60435400 J 1-5-5

Example:
JOBAAA, ,, 50000, 20,

has the same effect as:

JOBAAA, 0, 0, 50000, 20.

or

JOBAAA, PO, T0, CM50000, EC20.
CONTROL STATEMENT PROCESSING FLOW

The system translates a control statement by:

1,

2,

Reading the statement from the control point control statement buffer. If necessary,
the system reads control statements from the job input file. :

Deleting all spaces between the beginning of the statement and the terminator
character (a period or a right parenthesis). In general, the system allows only
standard FORTRAN characters to appear before the terminator character, although
other characters can appear within a literal or inthe comment field.

Comparing special control statement names with the name of the control statement
being processed. If the statement name is CTIME, HTIME, RTIME, or STIME, the
system processes the control statement.

Searching the file name table for a file assigned to the job with a name identical to
the name of the control statement. However, if a $ precedes the program name,
this step is skipped. If an identical name is found, the program is loaded into
memory. The arguments are extracted from the control statement and stored in
RA+2 through RA+n+1 (n is the number of parameters), The CPU is requested fo
begin execution unless special loader control statements follow.

Searching the central library directory for a program name that matches the control
statement name. If the name is found, the system proceeds as in step 4; otherwise,
the system searches further.

Searching the peripheral processor library directory for a program name that
matches the control statement name. If found, the name is placed, with a maximum
of two arguments, as a peripheral processor request, and the system exits to the
program,

If the control statement name is not found during any of the above searches, the
control statement is declared illegal and the job is aborted.

60435400 J

Figure 1-5-1 illustrates the flow of control statement processing.

START
{D PROCESS FIELD
FOUND YES LENGTH CONTROL
READ A 2 (SEE SECTION 3)
CONTROL s
STATEMENT
ﬁ‘“‘u" c::n LOAD PROGRAM
BRARY TO CENTRAL
CONTROL STATEMENT _ | CONTROL MEMORY
PROCESSOR SEARCHES STATEMENT
ITS LIST OF CONTROL _ NAME
STATEMENT NAMES FOR
SPECTAL CONTROL
STATEMENT STORE CONTROL
A STATEMENT AND
YES CONTROL STATEMENT]
ARGUMENTS IN
USER'S FIELD
PROCESS 0 LENGTH
SPECIAL
REQUEST
SEARCH PP
LIBRARY FOR p——
NAME, IF NAME PROCRAL
IS LEGAL PP
PROGRAM NAME
STATEMENT
PLACE NAME
YES WITH UP TO TWO
OCTAL ARGUMENTS
AS A PP REQUEST
USE NOS FORMAT No
FOR PROCESSING
STATEMENT PARAMETERS
NAME DECLARE
CONTROL EXIT TO PROSRAM
STATEMENT (NO FL CHANGE)
1LLEGAL
SEARCH FNT
FOR FILE
ASSIGNED TO
THIS J0B

®

Figure 1-5-1. Control Statement Processing Flow

60435400 J ' 1-5-7 |

EXIT PROCESSING

When an error condition occurs during job processing, the system searches the control
statement record for an EXIT statement. If the record does not contain an EXIT state-
ment, the system terminates the job. If the system finds an EXIT statement, it clears
the error condition and processes the control statements that follow the EXIT statement.
If the error was a time limit error, the limit is reset to the time used plus 10g sec-
onds. This gives the user time for post-error cleanup operations, If the error was an
SRU limit error, the limit is reset to the SRUs used plus 10g SRUs.

If a NOEXIT statement is encountered, normal error processing is not performed.

That is, if the no exit flag has been set (by the NOEXIT statement) prior to the error,
the error flag is cleared, no search is made for an EXIT statement, and processing
continues with the next control statement. An ONEXIT statement can be used to return
to error processing mode; it clears the no exit flag,

The following sequence of control statements illustrates this exit processing.
JOBCCC.
USER(SMITH22, SM)
CHARGE(55A19, 69P5)
NOEXIT.

GET(A, B)

ONEXIT.
ATTACH(MASTER/M=W)
SKIPEI(MASTER) .
COPYBF(A, MASTER)
COPYBF(B, MASTER)
PACK(MASTER)
COPYSBF(MASTER,)
EXIT.

ENQUIRE(F)

-EOR-

-EOI-

This job gets local copies of two indirect access permanent files and adds them to a direct
access file. The NOEXIT suspends error processing, and the job continues even if file

A and/or B is not found. The ONEXIT turns error processing back on. If any error occurs
thereafter, processing skips to the EXIT statement and continues with the ENQUIRE. If no
error occurs after the NOEXIT, processing continues until the EXIT statement and
terminates (ENQUIRE is not processed).

1-5-8 60435400 J

JOB CONTROL CONTROL STATEMENTS 6

X

The job control control statements enable the user to alter information that controls his
job while in the system and to retrieve information concerning the status of his job.
The control statements included in this category are:

ACCOUNT
CHARGE
COMMENT
CTIME
DAYFILE
ENQUIRE
ENTER
EXIT
HTIME
LDI
LENGTH
LIMITS -
MFL

MODE
NOEXIT
NORERUN
NOTE
OFFSW
ONEXIT
ONSW
PASSWOR
PROTECT
RERUN
RESOURC
RFL

ROLLOUT
RTIME
SETASL
SETJSL
SETPR
SETTL
STIME
SUBMIT
SUI
SUMMARY
SWITCH
USECPU
USER

The user must have specific validation parameters set to use LDI, PASSWOR, PROTECT,
SUBMIT, or SUI. He can use the remaining statements regardless of his validation.

A listing of validation information can be obtained using the LIMITS statement. Although
the user is allowed to change several control values for his job (such as RFL, SETPR,
and SETTL), he can never specify more than that for which he is validated.

The system uses the USER statement and CHARGE statement for checking user valida-
tion and system accounting information.
system to prevent deadlocks from occurring when several tapes or packs are used

concurrently.

The RESOURC statement is used by the

The user can submit files as batch origin type jobs through the LDI and SUBMIT con-
trol statements. He can specify the mode of error exit processing desired through use
of the EXIT, ONEXIT, NOEXIT, and MODE statements, He can also set conditions for
his program with sense switches (such as ONSW, OFFSW, and SWITCH). In the event
of a system malfunction causing jobs to be recovered, he may either allow his job to be
run again with the RERUN statement or prevent it from being rerun with the NORERUN
statement. Additional information is returned to the user by the CTIME, RTIME, STIME,

HTIME, and DAYFILE statements.

his own dayfile documentation.

60435400 J

The COMMENT statement allows the user to provide

1-6-1

ACCOUNT STATEMENT

The ACCOUNT control statement is included for compatibility with previous systems.
The USER control statement should be used with the present system.

CHARGE STATEMENT ‘

The CHARGE statement causes the system to record on the account dayfile all informa-
tion regarding resources used under a specified charge number/project number combina-
tion. Its purpose is to control the accounting activity of the system for a customer

or the installation. :

The control statement format is:
CHARGE(chargenum, projectnum)
chargenum A 1- to i0-alphanumeric characier charge number assigned
to the user.

projectnum A 1- to 20- alphanumeric character project number assigned
to the user,

For added security, the user may issue the CHARGE statement without parameters.
In this case, the system reads the parameters from a record in the INPUT file. This
record must be a single line with the format:

chargenum, projectnum

The CHARGE statement is used in conjunction with user accounting control. An instal-
lation which inplements this feature can impose limits on the SRUs a user may accumu-
late or restrict his access to the system to a certain time-of-day interval.

If access option 8 is not set (refer to LIMITS control statement in this section), the
user must include a CHARGE statement immediately following every USER statement
in his job. If option 8 is set, the user may but is not required to include a CHARGE
statement. A user assigned more than one charge and/or project number may include
additional CHARGE statements in his job to record resources used under each charge
number/project number combination. Whenever a new CHARGE statement is issued,
the SRU information for the previous charge number/project number is written to the
account dayfile and then cleared, However, the other accumulators (central processor
time, mass storage activity, and so on) are not cleared but continue to increment.
The following message is also issued when a new CHARGE statement is entered,

yy.mm.dd. hh.mm.ss. jobname. ACCN, chargenum, projectnum.

For a complete list of accounting messages issued to the user's dayfile, refer to Job
Completion in section 3.

1-6-2 60435400 J

COMMENT STATEMENT

The COMMENT statement enters the specified comment in the system and user's dayfile.
The control statement format is:
COMMENT. comments
or
*comments
comments Any combination of characters the user wishes to display
If the

*comments

format is used, the * must be the first nonblank character.

CTIME STATEMENT

The CTIME control statement requests that the accumulated CPU time for the job be issued
to the user's dayfile (in seconds).

The control statement format is:
CTIME.

DAYFILE STATEMENT

The DAYFILE control statement causes the system to write the user's control point
dayfile to the file specified.

The control statement format is:

DAYFILE(lfn, strng, op, pd, pl)
or
DAYFILE(L=1fn, FR=strng, OP=op, PD=pd, PL=pl)

L=lfn File on which the dayfile is to be written. If omitted, OUTPUT
is assumed. Pagination will occur if listing file name is OUT-
PUT or if PD or PL is specified.

FR=strng This parameter specifies the literal string for which a search
is to be made in the dayfile. Unless the literal string is a
valid command or control statement (7 characters or less),
it must be enclosed by $ delimiters. The first character of the
literal string requested must always be the starting position of
the field (for example, the first character of the time field is a
space). The field to be searched is specified by the op param-
eter. The portion of the dayfile from the last occurrence of
the requested literal string to the end of the dayfile is returned
to the user.

60435400 J 1-6-3

OP=0p

AN

PD=pd

PL=pl

Selects search option (single character):

Search time field for matching string.
Search message field for matching string.
Incremental dump (from point of last dump).
Full dump. .

W28

If a literal string (strng) is specified and op is omitted, OP=M
is assumed; if both strng and op are omitted, OP=F is assumed.

Print density (3, 4, 6, or 8 lines per inch); if omitted, PD=6
is assumed.

Selects page size; if omitted, page size is determined from

print density. Page size does not include title lines.

Examples:

DAYFILE(TEMP, $ABCDEFGS$)
DAYFILE(L=TEMP, FR=$ABCDEFG$, OP=M)
DAYFILE(FR=COMPASS)

ENQUIRE STATEMENT

The ENQUIRE control statement gives information about the system to the user. Three
forms of the command are allowed.
The control statement formats are:
ENQUIRE(OP=p1ps...Pp, JN=jobname, FN=1fny, O=1fny)
or '
ENQUIRE(pypg. .« . Pp)
or
ENQUIRE.
p; Any of the following options.
Option Description
A Gives listings of the B, D, R, U, J, L, and F

options, respectively,

1-6-4 60435400 C

60435400 J

Description

Returns identification and priority information to the
user.

Example:
USER NUMBER DLH2500
USER INDEX HASH AKWA
JOB NAME AKQAAEF
JOB SEQ. NO. AAEF
FAMILY CLS127
PACKNAME *NONE*,
PRIMARY FILE *NONE#=,
SUB SYSTEM NULL.
QUEUE PRIORITY 4010
CPU PRIORITY 30
MAX FL (CM) 203700
MAX FL (EC) 0
LAST FL (CM) 0
LAST FL (EC) 0

Returns a listing of the resources the user has de-
manded and those which have been assigned.

Example:
RESOURCE DEMAND INFORMATION.
RESOURCE DEMAND ASSIGNED
MT 2 2

Gives the status of files at the user's control point. An
asterisk (*) after the file type indicates that the file is
locked. (The user cannot write on a locked file.) Refer
to the FILE function in section 4 for the meaning of the
file type mnemonics. The STATUS column lists the
last operation performed on the file. (I/C means
incomplete.)

Example:

FILENAME LENGTH/PRUS TYPE STATUS
EXAMP 2 . LO. EOR READ
INPUT 3 IN, * EOR READ
BFILE3 21 LO. EOR READ
OUTPUT 3 PR. 1/C WRITE

TOTAL = 4

Returns the contents of the user's control registers,
error flag field, and succeeding control statements.

Example:
JOB CONTROL REGISTERS.

1-6-5

Description

CONTROL STATEMENT(S).

GET(ALPHA)
COPYSBF(ALPHA,)
EOR

If the J option is used within a CCL procedure, only the
remaining control statements in the procedure are
listed.

Returns user's loader information.
Example:

LOADER INFORMATION.
MAP OPTIONS = SBX
GLOBAL LIBRARY SET IS -
EMPTY.

Returns to the user the amount of resources used. The
resources listed include CPU time, mass storage acti-
vity, magnetic tape activity, and permanent file activity.
These statistics are factors used in calculating SRUs
used.

Example:

RESOURCES USED.

CPU TIME 0.025 SECS.
MS ACTIVITY 0.117 KUNS.
MT ACTIVITY 0.000 KUNS.
PF ACTIVITY 0.010 KUNS.
ADDER 0.002 KUNS.
SRU 2.025 UNTS.

Returns the user's accumulated SRUs. The SRU
represents the total usage of the system by the user.
This unit is derived from central processor time, I/0O
activity, and memory usage.

Example:
SRU ACCUMULATOR.
SRU 2.030 UNTS.
Returns accumulated CPU time.
Example:
CPU ACCUMULATOR.

CPU TIME 0.017 SECS.

Returns the initial amount of resources available to the
user in seconds, job step SRU, account block SRU, and
the remaining resources available for dayfile messages,
control statements, dispose files, and mass storage,

60435400 J

Option Description

4

" Example:
RESOURCE USAGE ALLOWED.
SECONDS 64
JOB STEP SRU 128
ACCOUNT BLK SRU 640
DAYFILE MESSAGES 462
CONTROL STATMTS 458
DISPOSE FILES 4
MASS STORAGE 12586
jobname Last 3 characters of the name assigned by the system to
a job initiated by the SUBMIT, ROUTE, or LDI state-
ment. When this parameter is specified, the status of
the job is returned. If JN {without =jobname) is

specified, the status of all jobs associated with the
current user number that are active in the system is
returned. The user can obtain only the status of jobs
submitted under the current user number.

lfn1 Local file name. When this parameter is specified, the
status of the particular file is returned in the same
manner as when the F option is specified.

Ifn Name of alternate file to receive output. If omitted, the

2 system assumes OUTPUT.
The third form of the statement (ENQUIRE.) defaults to the OP=A option. All OP= options
(except S and T) are executed, and the information is printed on the QUTPUT file.

If the JN=option or FN=option is executed, the information is printed on the OUTPUT file
only if it is the OUTPUT file for an interactive terminal. Otherwise, this information is N
written in the user's dayfile.

ENTER STATEMENT

The ENTER control statement enables the user to enter a series of control statements
on one line. This is especially useful for time-sharing users operating in the batch
subsystem.

The control statement format is:

ENTER. / statementl/ statement2/ veod statement

/ Delimiting character used to separate the individual control state-
menis on one line. Ii can be any character not used within the control
statements, It must immediately follow a period or right parenthesis. -

s(:atemeni:i Any NOS control statement for which the user is validated. Time-

sharing commands for which there are no batch counterparts are
not acceptable,

60435400.J 1-6~7

The system supplies a terminator (period or right parenthesis) if it is missing from any
statement.

Example:

From a terminal, a user enters the batch subsystem and types in an ENTER statement
on one line as follows: '

BATCH

$RFL, 0.

/ENTER. #SETCORE(0)#MA P(ON)#FTN(EL=F, I=ENTRFIL#LGO. #OVL. #DMP. #DMP
(1000)

This is essentially the sequence of control statements in the job in section 12 used to
illustrate the reading of CM dumps., However, instead of the FORTRAN program being
in the INPUT file, it is on a permanent file called ENTRFIL. The printouts shown in
the figures in section 12 are automatically listed at the terminal after the user presses
carriage return at the end of the ENTER statement.

EXIT STATEMENT

The EXIT control statement indicates the position in the control statement record where
processing will resume if an error is encountered or where to terminate normal con-
trol statement processing if an error is not encountered. For additional information,
refer to the description of the NOEXIT and ONEXIT control statements later in this
section and to the description of exit processing in section 5.

The control statement format is:

EXIT.

HTIME STATEMENT
The HTIME control statement issues a dayfile message giving the CYBER 170 model 176
accumulated clock cycle count for the job. A clock cycle on the model 176 is 27. 5 nano-
seconds. COMPASS instructions require a certain number of clock cycles to execute as
described in the COMPASS reference manual. This control statement can be used for
performance comparisons.
The control statement format is:

HTIME.
The resulting dayfile message has the following format. The cycle count is in kilocycle units.

HTIME nnnnnnnnnnnn., nnn KCYCLES.

An HTIME statement processed on a machine other than the model 178 produces the
following dayfile message.

HTIME NOT AVAILABLE.

1-6-8 60435400 J

LDI STATEMENT

The LDI routine copies 1lfn to mass storage and submits the job(s) to the input queue
with IDs to identify each job. The copy begins at the current position of the file pointer
and continues until an EQOI or double EOF is encountered. The jobs submitted are batch
origin type jobs. LDI does no reformatting of the job file and therefore submit direc-
tives (/job, /NOSEQ, and so forth) are not allowed.

The control statement format is:
LDI(lfn, id, m)

lfn Name of file containing the job(s) to be submitted; if
Ifn is omitted, LOAD is assumed.

id Identification code (0 through 67; and 77g); if omitted,
0 is assumed. 1If an id of 77g 1s assigned, the
OUTPUT file is released at job completion.

m Job names of jobs loaded are listed in the dayfile for
the control point; if omitted, the list is suppressed.

The user can submit only the number of jobs for which he is validated (refer to the
DB field description for the LIMITS control statement in this section). If this limit is
exceeded, no further jobs are loaded, and the following message is issued to the dayfile.

TOO MANY DEFERRED BATCH JOBS.

If the submitted job contains an illegal USER statement, the job entering the LDI state-
ment is aborted (no exit processing), and the following messages are issued to the
dayfile. '

ILLEGAL USER CARD.
SYSTEM ABORT.

In addition, the following message is issued to the account dayfile,

SIUN, usernum.

Terminal users are immediately logged off with no dayfile message. The security count for
the user number that entered the L.DI statement is decremented accordingly.

LENGTH STATEMENT
The LENGTH control statement gives the user the current status of one of his local files.

The contreol statement format is:
LENGTH(Ifn)
Ifn Name of local file.

The information given for the local file includes its length in PRUs, type, and current status.

60435400 J 1-6-9 I

LIMITS STATEMENT

The LIMITS control statement directs the system to list validation information on file
OUTPUT for the user named on the latest USER statement.

The control statement format is:
LIMITS.

Generally, validation limits are the internal system controls associated with each user
number which govern his use of certain system resources. The listing provided describes
both the resources available to the user and the extent to which they may be used. All
numeric values listed are decimal unless the postradix B appears, signifying an octal value.
The following information is listed.

Field . Description
ABT,TT Answerback identifier (1 to 10 alphanumeric characters) used for ter-

minal idantifantian
daruidlr UTULLLLCaLLUL.

MT Maximum number of magnetic tape units the user is allowed to have
assigned to his job concurrently.

RP Maximum number of removable auxiliary devices the user is allowed
to have assigned to his job concurrently.

TL Maximum amount of central processor time (cumulative CPU time
slices) in seconds allowed for each job step of the user's job. TL
represents the actual time limit divided by 10g.

CM Maximum number of central memory words that the user is allowed
to request. The value stored for CM represents the actual word limit
divided by 100g.

NF ' Maximum number of files that the user is allowed to have assigned to
a job concurrently,

DB Maximum number of deferred batch jobs that the user can have in the
system concurrently.

If the user is validated for system privileges and DEBUG mode is set
on the system display console or if the user is submitting jobs from
system origin, this parameter is ignored. The user is allowed to
submit as many jobs as desired.

FC Maximum number of permanent files the user can have in the catalog.

CS Maximum number of PRUs available to the user for indirect access
files.

FS Maximum number of PRUs available to the user for any one indirect
access file. :

PAT,TT Terminal parity (EVEN or ODD),

ROT,tt Number of rubout characters required for carriage return
delay.

PX 1,11 FULL or HALF duplex transmission mode.

TTt,it Terminal type. '

TCt Character set to be used by time-sharing terminal.

ISt Initial subsystem for time-sharing terminal.

t For further information about this field, refer to the IAF Reference Manual or Time-
Sharing User's Reference Manual.
Tt These fields are not used with network terminals.

| -5-10 60435400 J

Field

CcP
LP
EC

SL
CN
PN
DS

AW

Description
Maximum number of mass storage PRUs the user is allowed to addition-
ally allocate via his job.

Maximum number of CPU program messages that the user's job can
issue to the system and/or job dayfiles.

Maximum number of batch control statements processed for a user.
(Time-sharing processed control statements are excluded.)

Maximum number of print and punch files the user can dispose to ouiput
queues.

Maximum number of cards that can be punched from a user's punch file.
Maximum number of lines that can be printed from a user's print file.

Maximum number of ECS memory words that the user is allowed to
request.

Maximum number of SRUs the user is allowed for a job.
Charge number to which the user is assigned.
Project number to which the user is assigned.

Maximum number of PRUs available to the user for any one direct access
permanent file.

Access word; controls the user's access within the system according to
the following options (assumed values are options 0, 2, and 3).

Option Specifies
0 User can change his password.
1 User can use the privileged time-sharing commands.t
2 User is allowed to create direct access files.
3 User is allowed to create indirect access files.
4 User can have system origin (SYOT) capability for any job

origin if the system console is in DEBUG mode.

The user is allowed to assign a device by its EST ordinal
although the system need not be in DEBUG mode to do so.

The user is allowed to call the customer engineering PPU-
based diagnostics if ENGINEERING mode (ENGR) is set at
the system console.

User can access/create library files.

User can assign nonallocatable devices. A nonallocatable
device is a magnetic tape unit, card reader, card punch,
or line printer. Refer to the REQUEST statement in
section 7 for further information.

7 User is allowed to access the system without supplying his
assigned charge and project numbers.

8 User can define, save, and replace files on auxiliary devices.

9 User can access special transaction functions for library

updates and batch transaction processing.

T For further information about privileged time-sharing commands, refer to the NOS
Operator's Guide.

60435400 J

1-6-11 @

Option ‘Specifies

10 Allows no terminal timeout.
11 Allows use of the system control point (SCP) facility.
12 User has special accounting privileges, |
13 Allows BATCHIO subsystem privileges. Tt
14 Allows use of the PROTECT statement.
15-23 Reserved.
24-35 Used by Control Data for application validation. T11
36-47 Available for user application validation.
48-59 Reserved.

The numerical value listed for AW is an octal representation of the bit settings for the above
options. Thus bit 0 is option 0, bit 1 is option 1, and so forth. The rightmost octal number
can designate any combination of options 0, 1, and 2; the next octal number to the left can
designate any combination of options 3, 4, and 5; and so on. For example, if the access
word were:

AW=00000000000100000215
the user would be validated for options 0, 2, 3, 7, and 24.

If any parameters are included on the LIMITS statement, the system issues the following
message to the user's dayfile.

ERROR IN LIMITS ARGUMENTS.

MFL STATEMENT

The MFL control statement resets the maximum field length for each subsequent job step.
The control statement format is:

MF L(nnnnnn, mmmim)

or
MF L(CM=nnnnnn, EC=mmmm)
nnnnnn Maximum central memory field length (octal is assumed unless deci-
mal is specified by a D suffix or use of the digits 8 or 9).
mmmm Maximum extended core storage (ECS) field length. The value of

mmmm is the actual extended core field length divided by 10008'
The parameters may be specified positionally, by keyword, or intermixed positionally and
by keyword. If intermixed, the positional parameters are evaluated according to their
position among all the parameters.

T Refer to the System Maintenance Reference Manual for a description of special user's
accounting privileges. .
TT Currently this bit allows the user to use the V carriage control character (refer to
appendix I). .
TTT These options are described in the System Maintenance Reference Manual.

1-6-12 80435400 J

The parameter nnnnnn sets an upper boundary for the field length of subsequent job
steps. The value cannot exceed the maximum field length for the job nor can it be
less than 1500, the field length required for the utility (CONTROL) that processes MFL.
Likewise, the parameter mmmm seis an upper boundary for the ECS field length of
subsequent job steps and cannot exceed the maximum field length for the job. If the
value 0 (zero) is entered for CM or ECS field length, the MFL is set to the maximum
field length for the entire job,

The MFL control statement clears any initial running field length previously established
with the RFL control statement or the SETRFL macro and allows the system to deter-
mine the field length for each succeeding job step. The system continues to deter-

mine field lengths until another RFL control statement or SETRFL macro is encountered.

If the field length requested is greater than 37'?7778 for CM, or 77778 for EC, the
following error message is issued.

CM OR EC REQUEST EXCEEDS MAXIMUM.

MODE STATEMENT

The MODE statement defines the error conditions that cause the system to exit from normal
processing. When the specified error occurs, the system sets the appropriate error flag
and exits from normal processing to perform any error processing required. If an error
occurs for which the exit mode is not selected, the system notes the error, skips the opera-
tion that is causing the error, and continues normal processing.

The control statement format is:

MODE(m, n)
m CPU program error exit mode (0 m<7T)
n CPU hardware error exit mode (0<n<7). Included for compatibility

with earlier versions of NOS. The system now forces n=7 regardless
of the value specified on the control statement.

The following values can be supplied for m.

m CPU Program Error Exit Mode
0 Disable program exit mode; no selection made.
1 Address out of range because:

e Attempt was made to reference CM or ECS outside
established limits, or

e Attempt was made to reference last 60-bit word
(word 7) in relative address FL of ECS.

~ - . : : : : : .
2 Cperand out of range; floating-point arithmetic unit received

an infinite operand.
3 Address or operand out of range.

Indefinite operand; floating-point arithmetic unit received an
indefinite operand.

5 Indefinite operand or address out of range.
Indefinite operand or operand out of range,

Indefinite operand, operand out of range, or address out of
range, If no mode is selected, the system assumes m=7.

60435400 J 1-6-13

If exit mode 3, 5, 6, or 7 is specified, a combination of exit modes 1, 2, and 4

is actually selected. For example, if exit mode 5 is specified, an error exit occurs
for either a mode 1 or mode 4 error condition. Refer to Error Control in section 3
and to the CYBER 170, CYBER 70, and 6000 Series Computer Systems Reference
Manuals for further information about the processing of mode errors.

NOEXIT STATEMENT

The NOEXIT control statement suppresses the transfer of control to the statement
following the next EXIT statement if an error occurs.

The control statement format is:

NOEXIT.
If a NOEXIT statement has appeared in the control statement record and an error
occurs, processing continues with the next control statement, if possible (that is, if

the error does not cause the job to unconditionally abort). Refer to the description
of exit processing in section 5 for further information.

NORERUN STATEMENT

The NORERUN control statement allows a user to clear job rerun status.

The control statement format is:
NORERUN.

If the NORERUN statement has been issued, the job may not be rerun. This may be
desirable to prevent updating of an important data base when the job would otherwise
be rerun,

This statement is ignored from a time-sharing origin job,

1-6-14 60435400 J

NOTE STATEMENT

The NOTE control statement enables the user to create a file containing lines of data
entered as a character string on the same line as the control statement.

The conirol statement format is:

NOTE(lfn, NR)/lineI/Iinez/. .. /].inen

lfn Name of the file which contains the specified lines, Default is
OUTPUT.
NR Inhibits rewind of lfn., Default is to rewind the file at the

beginning and end of NOTE execution,

/ Delimiting character used to separate the individual entries that
become lines in the file, It can be any character, It must
immediately follow a period or right parenthesis.

line; A character string which constitutes one line of data in 1fn.

If a file contains more lines than can be entered with a single NOTE statement, a
series of NOTE statements, each with an NR, can be used. This series should be
followed with a PACK statement since each NOTE statement writes an EOF.

Example:

-

The following sequence of statements creates a procedure file (PFILE) that can insert
an input record after any record in an existing master file (LISTFIL).

NOTE(PFILE, NR)*, PROC, INSERT, N, *GET(LISTFIL *COPYBR(LISTFIL, NEWLIST, N)
NOTE(PFILE, NR)*COPYBR(INPUT,NEWLIST)*COPYEI(LISTFIL, NEWLIST)
NOTE(PFILE, NR)*REPLACE(NEWLIST=LISTFIL)

PACK(PFILE)

SAVE(PFILE)

To insert an input record after the second record in LISTFIL, the user includes the
following CCL statement in the job that contains the new input record.

BEGIN, INSERT, PFILE, 2.

OFFSW STATEMENT

The OFFSW control statement clears the pseudo-sense switches for reference by the
user's program.

The control statement format is:
OFFS’W"(sl, Sgsenes sn)

s; Sense switch to be cleared; lgsigb‘. If si=0 is specified, all
sense switches are cleared.

Refer to the description of the ONSW statement for further information on sense switch
settings.

60435400 F 1-6-15

ONEXIT STATEMENT

The ONEXIT control statement causes the transfer of control to the statement following the
next EXIT statement if an error occurs.

The control statement format is:
ONEXIT.
The ONEXIT statement reverses the effect of a NOEXIT statement. If an error occurs in

processing the statement following ONEXIT, control transfers to the statement follow ing
the next EXIT statement. Refer to the description of exit processing in section 5 for further

information.

ONSW STATEMENT

The ONSW control statement sets the pseudo-sense switches for reference by the user's
program.

The control statement format is:
ONSW(s1,59,.4., 8p)

si Sense switch to be set; 1<s. <6, If s;=0 is specified, all sense
switches are set. 1

The system stores the sense switch settings in the user's control point area and copies

them to RA at the beginning of each job step for use by the central program. The sense
switch field in the control point area and the one in RA are updated separately.

PASSWOR STATEMENT
The PASSWOR control statement is used to change the user's password,

The control statement format is:

PASSWOR/(oldpswd, newpswd)
oldpswd Old password
newpswd New password

The new password must be the minimum length required by the installation. The default
-minimum is 4 characters.

For added security, the user may issue the PASSWOR statement without parameters. In
this case, the system reads the parameters from a record in the INPUT file. This record
must be a single line with the following format.

oldpswd, newpswd

1-6-16 60435400 F

The user's password is changed from oldpswd to newpswd. The user can change his
password only if access option 1 is set (refer to the LIMITS control statement in this
section). If option 1 is not set and the user submits a PASSWOR statement, the sys-
tem issues the following message to his dayfile.

ILLEGAL CONTROL CARD,

1f the control statement parameters are in error, the system issues the following
message,

ERROR IN PASSWOR ARGUMENTS.
If the installation is currently updating the validation file or another user is modifying his
password, a nontime-sharing origin job is rolled out until the validation file is available.
A time-sharing origin PASSWOR command is aborted with the message:

MODVAL ABORTED.

If this situation is encountered, the time-sharing user should be able to retry his pass-
word change within a short time.

PROTECT STATEMENT

The PROTECT statement is used to activate or deactivate preservation of a user's ECS
field length between job steps.

The control statement format is:

ON
PROTECT ({OFF})
or
- JON
PROTECT (EC= OFF})

The parameter is activated by specifying ON and deactivated by specifying OFF. ECS
preservation is initially OFF.

Ordinarily, the ECS field length of a job is zeroed at the completion of a job step.
With EC=ON, the ECS field length is preserved between job steps.

The PROTECT statement is available to the user only if option 15 of his access word
is set (refer to the LIMITS control statement in this section). If option 15 is not set
and the user submits a PROTECT statement, the system issues the following message
to his dayfile.

CPM - ILLEGAL USER ACCESS.

If no parameters are specified, an

illegal keyword is used, or any parameter cther than
ON or OFF is entered, the system issues the following message.

ERROR IN CONTROL ARGUMENTS.

60435400 F 1-6-17

RERUN STATEMENT

The RERUN control statement allows a user to set job rerun status.

The control statement format is:
RERUN.

If the RERUN statement has been issued, the job may be rerun. This statement is ignored
from a time-sharing origin job.

RESOURC STATEMENT

The RESOURC control statement is required in any job that uses more than one tape or pack
concurrently; it prevents deadlocks with other jobs which may need the same resources.

The control statement format is:

RESOURC(rt1=u1. ri:2 TUgseens rtn=un)

rt.1 Resource type:
LO T-track magnetic tape unit
HI 7-track magnetic tape unit
HY T-track magnetic tape unit
HD 800 cpi, 9-track magnetic tape unit
PE 1600 cpi, 9-track magnetic tape unit
GE 6250 cpi, 9-track magnetic tape unit
MTt 7-track magnetic tape unit
NTT 9-track magnetic tape unit (800/1600 cpi)
DIi 844-21 Disk Storage Subsystem (1<i<8)
DJi 844-41/44 Disk Storage Subsystem (1<i<8)
DKi 844-21 Disk Storage Subsystem (full track) (1<i<8)

DLi 844-41/44 Disk Storage Subsystem (full track) (1<i<8)
DMi 885 Disk Storage Subsystem (half track) (1<i<3)
DQi 885 Disk Storage Subsystem (full track) (1<i<3)

u. Maximum number of units of resource type rt; this job will use
concurrently; any rt;=u; entry can be changed on subsequent
RESOURC control statements. (Refer to Altering Resource
Requirements.) An rt=0 entry can be entered to clear a resource
type that is no longer required.

t Retained for compatibility with NOS 1.2. Refer to restrictions described under Tape Units
in this section. :

1-6-18 60435400 J

DEADLOCK PREVENTION

The system manages the use of tape units and disk packs so as to prevent deadlocks from
occurring. A deadlock means that the system, by assigning a tape unit or pack to one job,
prevents another job with currently assigned resources from completing. For example,
an installation with two tape units is processing jobs A and B. Each job needs both units
during some phase of processing. Job A is assigned unit 1. If job B were assigned unit 2,
neither A nor B could complete until the other job relinquishes its assigned unit.

To prevent deadlocks from occurring, the system requires that a RESOURC control state-
ment be included in any job that uses more than one tape or disk pack concurrently, Thus,
in the previous example, a RESOURC statement is required in both jobs. The information
supplied by the statements enables the system to anticipate the deadlock situation and roll
out job B until job A no longer needs both units. When a job that includes 2 RESOURC state-
ment is submitted, the system first checks if the specified number of units exceeds the num-
ber of units for which the user is validatedt or the number of units available at the installa-
tion. If either of these situations occurs, the system issues an error message to the user's
dayfile and aborts the job. (Refer to figurel-6-1.)

Statement first requesting a
particular tape or auxifiary packtt

RESOURC
Statement

Is unit
request
fg? disk
pack
?

Is ’mpek
or pac
uested

;sgilable
?

Assign tape _
or pack to job

Timed roll
> out of job

Are units
already assigned
to job

Print message
and abort job

tRefer to description of Resource Overcommitment.
1t The statements are described in sections 8 and 10.

Figure 1-6-1. Resource Commitment Processing (Simplified)

+ For jobs that use only one tape or pack at a time and do not contain a RESOURC statement,
the system checks validation limits when the request is made.

60435400 H 1-6-19

When the job requests a tape or pack,T the system compares the number of units that jobs
being processed have scheduled via RESOURC statements with the number of units actually
assigned., If it determines that the assignment would cause a deadlock (refer to Resource
Overcommitment), it rolls out the job until a deadlock would not occur., If the assignment
would not cause a deadlock, the system searches for the requested tape or pack. If found,
it is assigned to the requesting job. If the pack is not found and the NA keyword was in-
cluded in the request or if the tape is not found, the requesting job is rolled out until the
operator makes the pack or tape available.

SINGLE RESOURCE USE

A job that uses only one tape or disk pack concurrently does not need to specify resource
demand with a RESOURC statement. However, before assigning the same or a different

type of resource, the current single resource (tape or disk pack) must be returned with

either the RETURN or UNLOAD control statement. To allow more flexible resource handling,
both the RETURN and UNLOAD functions decrement the default resource demand count from
one to zero for jobs requiring only one tape or disk pack concurrently. For those jobs
requiring more than one tape or disk pack concurrently (as specified by the RESOURC state-
ment), UNLOAD does not decrement the resource demand count; RETURN decrements the
resource demand count only when all concurrent resource demands have been satisfied,

TAPE UNITS

Density resource identifiers (HD, PE, GE) should be used to indicate 9-track magnetic tape
unit demand. The system supports 9-track drives with alternate densities and needs this
information to prevent deadlocks and overcommitments. The 679-2/3/4 tape units are
capable of processing both 800-cpi and 1600-cpi 9-track tapes; the 679-5/6/7 tape units
handle both 1600-cpi and 6250-cpi 9-track tapes. An 800-cpi 9-track tape cannot be
processed on a 1600/6250-cpi unit, and 6250-cpi 9-track tape cannot be processed on an
800/1600-cpi unit. The NT resource identifier, retained for compatibility, can be used
only to allocate 800/1600-cpi 9-track unitst and cannot be specified concurrently in the
same job with HD, PE, and GE resource demands. Default 9-track resource allocation

is by density.

Examples:
An installation has the following tape drive resources:
e Two 679-4 9-track tape drives (800/1600-cpi dengities)
e Two 679-7 9-track tape drives (1600/6250-cpi densities)

T Refer to Permanent File Control Statements in section 8 for a description of disk pack
requests and to Tape Management Control Statements in section 10 for a description of
tape requests.

Tt NT resource demand cannot exceed the number of 800/1600-cpi 9-track drives at the
installation. However, at tape assignment time, a 1600-cpi tape mounted on a 1600/
6250-cpi unit is accepted for NT resource demand if it does not cause overcommitment
(potential deadlock).

1-6-20 60435400 H

1. If a job makes a tape unit resource request with
RESOURC(NT=3)
the job is aborted with the message
INSUFFICIENT RESOURCES ON SYSTEM
because only two units {the 879-4s) meet the NT specification,
2. If a job makes a tape unit resource request with
RESOURC(NT=1, PE=1)
{he job is aborted with the message
CONFLICTING RESOURCE TYPES.
because the NT specification cannot be used with a density specification (HD/PE/GE).
3, If a job contains the following control statements

LABEL(TAPE,NT,D=PE, VSN=TAPE1)
RESOURC(NT=2)

the job is aborted with the message
CONFLICTING RESOURCE TYPES.

because the LABEL statement requested a tape unit by density (the default); there-
fore, later statements cannot schedule tape units using the NT specification.

Density identifiers are provided for 7-track tape units even though these units do not have
alternate densities, This is done for consistency of format. The LO, HI, HY, and MT
resource identifiers are all equivalent, and the last specification of any one of these is the
7-track tape unit demand for the job. For example, the resource request RESOURC(HI=1,
HY=2) results in two 7-track tape resources being allocated for the job.

RESOURCE OVERCOMMITMENT

Under certain conditions, the system overcommits resources, provided all jobs with cur-
rently assigned resources can complete. For example, an installation with three tape units

is processing jobs A and B. Included in each job is a RESOURC statement scheduling two
units. Job A requests its first tape. It is assigned the tape (unit 1) because there are

enough units available for job A to complete. Job B requests its first tape. It is assigned

the tape (unit 2) because either A or B can complete if assigned the last unit, and when the

job that is assigned the last unit completes, the other can then use that unit and also complete.
Job B then requests and is assigned its second tape (unit 3). It completes its operations (that
is, terminates or returns the files on the tape) and makes the unit available for job A to

complete.

In a multimainframe environment, only the
configuration of the machine on which the
job is processed is considered in the over-
commitment algorithm.

60435400 J 1-6-21 |

ALTERING RESOURCE REQUIREMENTS.

The system manages its resources by keeping totals of the number of units of each device
type scheduled and assigned to jobs. The number of units scheduled and the number of
units assigned to a job can vary during job processing.

To change the number of units of a device type scheduled for this job; the user can issue
another RESOURC statement. When decreasing the number of units scheduled for the job
via a RESOURC statement, the total resulting scheduled units must not be less than the
number of units currently assigned to the job. If the resulting total would be less than the
number currently assigned, the system aborts the job with an error message,

If the job has tape and/or removable pack units assigned to it when it attempts to increase
its resource demands, the system determines if the request would cause a deadlock. If it
would, it aborts the job with an error message.

It is recommended that the user always re-
turn all units assigned to his job before
issuing another RESOURC statement to in-
crease resource demands. This action pre-
vents a possible deadlock condition resulting
in job abort.

The scheduled units can also be decreased by a RETURN statement if the job, at a pre-
vious time, concurrently used its maximum scheduled units (refer to the description of the
RETURN statement in section 7).

Example:

The second RESOURC statement increases the number of scheduled disk drives and
decreases the number of scheduled tape units.

SA MSJOB(CM50000, T40)
USER(SJGREEN, WGT,ALTFAM)
CHARGE(D593, 75)
RESOURC(HD=2)

LABEL(X, D=HD, VSN=TAPE1)
LABEL(Y,D=HD, VSN=TAPE2)
RETURN(X,Y)
RESOURC(DI1=2,HD=1)

-EOI-
UNIT ASSIGNMENT

The method of assigning units depends on the resource type. For example, all tapes and
all private disk packs not accessible by alternate users can only be assigned to one job at
a time. All public packs and those private packs accessible by alternate users are share-
able, and therefore, can be assigned to several jobs at the same time,

1-6-22 60435400 J

On indirect access file requests, the pack is charged to the job in fulfilling its resource
demand only if the_ request causes the pack to be mounted. For direct access file re-
guestsé the pack is charged to the job when the first ATTACH of a direct access file
is made. '

A unit is assigned to a job until the job terminates or all direct access files residing

on the unit that are assigned to the job are returned. At this point, a tape or a non-

sharable pack can be dismounted. A sharable pack, however, can be dismounted only

glhen th;re are no files residing on the unit that are assigned to any of the jobs sharing
e pack.

|

In GET requests for indirect access files, a
pack is assigned to a job only as long as the
pack is actually being used (that is, until the
system retrieves the local copy of the file).

" Therefore, during a series of GET requests,
the operator may determine that the pack is
not being used and dismount it. If the user
has a direct access file on the pack, he can
avoid this situation by attaching the direct
access file before issuing the GET requests.

A single job cannot have more than 36 removable pack devices attached to the job
concurrently.

RFL STATEMENT

when neither the routine for processing that step nor a loader table specifies a field length

The RFL control statement sets the initial running field length for each subsequent job step l
(refer to Field Length Control in section 3).

The control statement format is:

RFL(nnnnnn, mmmm)
or
RFL(CM=nnnnnn, EC=mmmm)
nnnnnn Central memory field length (octal is assumed unless decimal is

specified by a D suffix or use of the digits 8 or 9). The value is
rounded up to the nearest multiple of 1008.

Specifying nnnnnn as 0 removes the effect of the previous RFL state-
ment and returns the setting of the field length to system control.

mmmm ECS field length in octal. The value of mmmm is the actual ECS
divided by 10004.

The parameters may be specified positionally, by keyword, or intermixed positionally and
by keyword. If intermixed, the positional parameters are evaluated according to their

position among all the parameters.

The values of nnnnnn or mmmm cannot exceed the values specified on the last MFL control |
statement or the maximum allowed for the job.

60435400 J 1-6-23

Prior to the appearance of the RFL control statement (or SETRFL macro), the system
determines the field length for each job step, provided no field length is specified by a
system routine or loader table (refer to Field Length Control in section 3).

If the field length requested is greater than 3777717g for CM or 77778 for EC, the following
error message is issued.

CM OR EC REQUEST EXCEEDS MAXIMUM.

ROLLOUT STATEMENT

The ROLLOUT control statement suspends job execution and places the job in the rollout
queue., This releases the control point, central memory, and ECS assigned to the job. The
user can specify a time period that must elapse before the job is returned. Otherwise, the
job scheduler usually returns the job to execution when its priority is the highest of the jobs
in the rollout queue (refer to Rollout Control in section 3).

The control statement format is:
ROLLOUTI(t)

t Optional time delay measured in job scheduler delay intervals. The
delay interval length is set by the installation; the default value is 1
second. Legal values for t range from 0 to 262 080 (777700g)
intervals. Although the default base is decimal, octal values can be
specified by a B suffix. Specifying a value containing an 8 or 9 and a
B suffix is illegal.

RTIME STATEMENT

The RTIME control statement requests that the time be read from the real-time clock and
issued to the dayfile (in seconds). This is the accumulated time since the last system
deadstart.

The control statement format is:
RTIME.
The dayfile message format is:

RTIME nnnnnn. nnn SECS.

SETASL STATEMENT

The SETASL control statement sets the system resource unit (SRU) limit for an account
block. An account block is the job step sequence whose execution is charged to an account
(refer to SRU Limit Control in section 3). The account is specified by the charge and pro-
ject numbers on a CHARGE statement, or if no CHARGE statement is required, by the user
number on the USER statement. Each user number and each account has an SRU validation
limit (refer to the LIMITS and ENQUIRE statements). Except for time-sharing jobs, the
default account block SRU limit is the smaller of the user number and the account validation
limits. For time-sharing jobs, the default limit is 64 SRUs.

® 1-5-24 60435400 J

The control statement format is:

SETASL(s)

s Maximum number of SRUs allowed for account block execution.
Although the default base is decimal, octal values can be specified by
a B suffix on the value, Specifying a value with'an 8 or 9 and a
B suffix is illegal.
s must be greater than or equal to the current job step SRU limit, T
and less than or equal to the user's and the account's validation
limits. Exceptions to this rule are the asterisk (*) and values greater
than 32 760 (77770g). These exceptions-set the account block SRU
limit to the validation limit.

If the account block SRU limit is reached during acccount block execution, the system issues
an error message and terminates the job (refer to Exit Processing in section 5).

SETCORE STATEMENT
The SETCORE control statement presets each word within the field length.

The control statement format is:

SETCORE(p)
or
SETCORE(~p)
p Any of the following: (If a minus sign precedes the parameter p, the
complement of p is set in core.)
] Fill Characters
0 0
ZERO Zeros (0)
INDEF Indefinite (1777 0000 0000 0000 0000)
INF Infinite (3777 0000 0000 0000 0000)

Each word within the field length is set to p. If p is omitted, the system assumes p=0.

To preset memory within a load sequence, the user issues a LDSET,PRESET control state-
ment as described in the CYBER Loader Reference Manual.

T The job step SRU limit must be lowered in the job before the account block SRU limit is‘
lowered. Refer to the SETJSL control statement in this section.

60435400 J . 1-6-25

SETJSL STATEMENT

The SETJSL control statement sets the system resource unit (SRU) limit for each subsequent
job step (refer to SRU Limit Control in section 3). Except for time-sharing jobs, the default
job step SRU limit is the smaller of the user number and the account validation limits (refer
to the LIMITS and ENQUIRE statements). For time-sharing jobs, the default job step limit
is 64 SRUs. Time-sharing users can increment their job step SRU limit to complete job
step execution (refer to the IAF Reference Manual or the Time-Sharing User's Reference
Manual).

The control statement format is:

SETJSL(s)
s Maximum number of SRUs allowed for job step execution. Although
the default base is decimal, octal values can be specified by a B
suffix on the value. Specifying a value with an 8 or 9 digit and a B
suffix is illegal.
. s must be greater than 0 and less than or equal to the current account

block SRU limitt and the user's and the account's SRU validation
limits. Exceptions to this rule are the asterisk (*) and values greater
than 32 760 (77770B). These values set the job step SRU limit at the
valida%ion limit if the account block SRU limit is set at the validation
limit.

The system issues an error message when the job step SRU limit is reached. A job step
within a batch job is then terminated (refer to Exit Processing in section 5). In time-sharing

jobs, the user can increment the SRU limit after receiving the SRU limit message (refer to
the IAF Reference Manual or the Time-Sharing User's Reference Manual).

SETPR STATEMENT

The SETPR control statement allows the user to decrease the CPU priority of a job.
SETPR(p)

p Priority, 1<pg 70g; if p exceeds 70g or the maximum priority defined
for the origin type of the job, it is reduced to that value.

Upon job initiation, a job is assigned the maximum priority allowed for its origin type. (The
installation defines these priority values.) If a job's CPU priority is lower than that of other
jobs, the job is assigned control of the CPU only when jobs of a higher priority do not need it.

T The account block SRU limit must be raised before the job step SRU limit can be raised.
Refer to the SETASL control statement in this section.

e 1-6-26 60435400 J

SETTL STATEMENT

The SETTL control statement sets the CPU time limit for each subsequent job step. Each
user number is validated for a maximum job step time limit (refer to the LIMITS and
ENQUIRE control statements). For batch jobs, when the user does not specify a time limit,
the system sets the limit at the user's maximum validation. For time-sharing jobs, the
default time limits is 64 CPU seconds. Time-sharing jobs can increment their job step
time limit to complete job step execution (refer to the IAF Reference Manual or the
Time-Sharing User's Reference Manual).

The control statement format is:

SETTL(t)

t Maximum number of CPU seconds allowed for job step execution.
Although the default base is decimal, octal values can be specified by
a B suffix on the value. Specifying a value with an 8 or 9 digit and a
B suffix is illegal.

t must be greater than 0 and less than or equal to the user's
validated time limit. Exceptions to this rule are the asterisk (*) and
values greater than 32 760 (77770g). These values set the job step
time limit at the user's validated time limit.

The system issues an error message when the job step time limit is reached. A job step

within a batch job is then terminated (refer to Exit Processing in section 5). In time-
sharing jobs, the user can increment the time limit after receiving the time limit message.

STIME STATEMENT

The STIME control statement requests that the accumulated SRU value for the job be issued
to the user's dayfile.

The control statement format is:
STIME.
The dayfile message format is:

STIME nnnnnn.nnn UNTS.

SUBMIT STATEMENT

The SUBMIT control statement places a user-supplied job file into the input queue as a
separate job. SUBMIT can reformat the file according to directives within the file,

The control statement format is:

SUBMIT(lfn, q, NR)c

Ifn Name of the file to be submitted to the system for processing as a
batch job.

60435400 J 1-6-27

q Specifies disposition of job output files (OUTPUT, PUNCH, PUNCHB,
and P8) as follows:

B Job output is disposed to local batch queue to be printed
and/or punched at the central site (default value for nontime-
sharing origin jobs).

N Job output is discarded at job termination (default value for
time-sharing origin jobs).

E Job output is disposed to the remote batch queue for printing
at a remote batch terminal.

NR No rewind option; inhibits rewind of file specified by reformatting
directive cREAD. If omitted, file specified by cREAD directive is
automatically rewound.

identify reformatting directives in the file

i

itted, the system assumes c=/,

(]
[d
1]
]
n
4
2

c Escape chara

The number of deferred batch (LDI, SUBMIT, and ROUTE) jobs that the user can have in
the system concurrently depends on his validation (refer to the DB field of the LIMITS
control statement in this section). If this limit is exceeded, an error message is issued to
the dayfile, and the SUBMIT statement is not processed. ’

For SUBMIT to process reformatting directives, the first line of the submit file must be a
c¢JOB directive. Each line preceded by an escape character is recognized as a reformatting
-directive. The escape character is specified on the SUBMIT statement (/ by default),
Throughout this description, the letter ¢, preceding a directive, denotes the escape charac-
ter. Reformatting directives may be interspersed throughout the submit file as long as
transparent mode is not in effect. Transparent mode is selected by the ¢cTRANS directive
and requires that the user observe special rules when ingerting subsequent directives into
the file (refer to description of cTRANS and eNOTRANS directives).

The system does not process reformatting directives unless the first line of the submit

file contains the cJOB directive. In addition, the first two statements following the cJORB
directive (second and third statements of the submit file) must be a job and USER statement,
respectively. All following information is determined by the user. Thus, the first three
lines of a submit file to be reformatted should be:

Inl cJOB
In2 jobname,...
In3 USER,...

Inl, 1n2, and In3 are optional line numbers.

The user can include line numbers on the submit file and specify which line numbers are to
be removed during reformatting with the SEQ and NOSEQ directives. This is especially
useful if the submit file contains a BASIC program where line numbers are a requirement
of the language. If line numbers are included in a submit file, the file must begin with a
c¢JOB directive.

® 1-8-28 60435400 J

The reformatting directives available are described as follows:

cJOB Indicates that the submit file is to be reformatted and selects
the following default reformatting directives. The default
directives remain in effect until specified otherwise.

cNOTRANS (disabled by ¢ TRANS)
cSEQ (disabled by ¢cNOSEQ)
cPACK ~ (disabled by ¢cNOPACK)

The ¢JOB directive must be the first line of the submit file.
If omitted, the file is not reformatted. If line numbers are
included in a submit file, the file must begin with a cJOB
directive.

cEOR Indicates that an end-of-record mark is to be placed at this
point in the submit file during reformatting.

cEOF Indicates that an end-of-file mark is to be placed at this point
in the submit file during reformatting.

cSEQ Indicates that the following lines are preceded by line numbers
and requests that they be removed (default value).

cNOSEQ Reverses the effect of the ¢SEQ directive. No attempt is made
to remove leading line numbers from subsequent lines. This
is especially useful when line numbers are required (such as
in a BASIC program).

¢PACK Requests that all succeeding end-of-record and end-of-file
marks be removed (default value). This directive applies
only to internal EOR and EOF marks that currently exist.
The ¢cEOR and cEOF reformatting directives are not affected.

cNOPACK Reverses the effect of the cPACK directive. Requests the
system not to discard succeeding internal end-of-record and
end-of-file marks that currently exist.

c¢TRANS Requests transparent mode, In transparent mode, SUBMIT
ignores reformatting directives until an EOR or EOF mark is
encountered. The EOR or EOF mark cannot be a mark to be
created by a cEOR or cECF directive. SUBMIT performs the
following procedure for transparent mode processing.

1. Read ¢TRANS directive,

2. Check if the next line is a reformatting directive.
If it is not, skip steps 3 and 4.

3. Process reformatting directive. If it is a ¢e NOTRANS
directive, select nontransparent mode and end
transparent mode processing.

Return to step 2.

5. Select transparent mode and read lines until an
internal EOR or EOF mark is encountered.

6. If the ¢cPACK directive is in effect, remove the EOR
or EOF mark.

7. Return to step 2.

60435400 J 1-6-29 e

1-6-30

¢cNOTRANS

cREAD, Ifn

The cTRANS directive is typically used in conjunction with the
cREAD directive. It allows the user to copy the contents of

an existing file into the submit file at the location of the cREAD
directive. Because the file is read in transparent mode, no
check for reformatting directives is attempted until an internal
EOR or EOF is encountered. The cREAD directive must

- follow the ¢cTRANS directive and must he located before the

first succeeding line that is not a reformatting directive. If
not, transparent mode is selected before the cREAD directive
is encountered and the ¢cREAD is ignored.

The cSEQ or ¢cNOSEQ directive in effect before transparent
mode was selected has no effect upon the submit file or the file
being read (cREAD) while transparent mode is in effect.
However, the cPACK or ¢NOPACK directive in effect before
transparent mode was selected remains in effect after it is
selected.

Reverses the effect of the cTRANS directive and informs the
System that the submit file is to be examined on a line-by-line
basis. All directives encountered in the submit file while the
c¢NOTRANS directive is in effect are processed. This direc-
tive is initially selected by default and remains in effect until
a ¢cTRANS directive is encountered in the submit file.

The user should be careful in placing this directive in the
submit file. If transparent mode is selected, this directive
can possibly be ignored unless it immediately follows either
a cREAD directive or an internal EOR or EOF mark.

Requests that the system read the contents of the specified
file, 1fn, and insert that file in place of the cREAD directive

in the submit file, during reformatting. Reading terminates
when an EOF or EQI is encountered on Ifn. If the file to be
read is not currently local to the job, the system automatically
attempts a GET and then an ATTACH on the file. If Ifn is not
specified in the directive, TAPE! is assumed. If the file
specified cannot be found, the message

NO READ FILE - lfn.

is issued to the user's dayfile, and the job is terminated. If
the read file is found to be busy (direct access files only), the
message

READ FILE BUSY - Ifn.

is issued to the user's dayfile, and the job is terminated. The
file specified by 1fn in the cREAD directive is automatically
rewound before the read operation unless the NR parameter is
specified on the SUBMIT control statement. In this case, the
rewind directive must precede the cREAD directive in the sub-
mit file if it is desired to rewind file Ifn before the read opera-
tion begins. The system returns all files specified in cREAD
directives before completion of the job.

If the cPACK directive is in effect at the time of the read, all
internal EOR marks are removed. If the cNOPACK directive
is in effect, all internal EOR marks are read into the submit
file in the proper position during reformatting.

60435400 J

Unless transparent mode is in effect when file Ifn is read,

each line of that file is also checked for a reformatting direc-
tive. Any directives contained in the file, except another
cREAD, are processed. The cREAD directive cannot be

nested. In addition, any directives in effect before the cREAD
directive is processed remain in effect for the file being read,
unless transparent mode is selected. Then, only the cPACK

or ¢cNOPACK directive remains in effect for the file being read.
Moreover, only those directives that immediately follow an
internal EOR in the file being read are processed. l

If the file to be read is a binary file, it is recommended that
the ¢ TRANS directive be used to ensure that binary data is not
mistaken for a reformatting directive. The ¢TRANS directive
should immediately precede the cREAD directive in the sub-
mit file, if used.

cREWIND, lfn Requests that the system rewind file 1fn to the beginning-of-
information (BOI). If Ifn is not supplied, TAPEI1 is assumed.
This directive is required only if the NR parameter is included
in the SUBMIT command. Otherwise, file Ifn is automatically
rewound.

This directive is used in conjunction with the cREAD directive.
Thus, if it is desired to rewind a file before the read operation
begins, this directive must precede the cREAD directive in the
submit file.

clEC=c2 Indicates that the escape code character is to be changed from
c, (current escape code) to ¢, (new escape code). The new
e5cape code is used to recognize all subsequent reformatting
directives until further change.

Input lines must not exceed 150 6-bit characters. SUBMIT processes the first 80 charac-
ters as the control statement. The remaining 70 characters are discarded and may contain
a sequence number or comments. If a line exceeds 150 characters, the results are
unpredictable.

If the submitted job contains an illegal USER statement, the job entering the SUBMIT state-
ment is aborted (no exit processing). The following messages are issued to the dayfile.

ILLEGAL USER CARD.
SYSTEM ABORT.

The security count for the user number that entered the SUBMIT statement is decremented,
and the following message is issued to the account dayfile.

SIUN, usernum.
Terminal users are immediately logged off and no message is issued. The system then
begins the login sequence (for IAF users) if the security count is greater than zero. For

further information concerning use of the SUBMIT statement from a time-sharing terminal,
refer to the IAF Reference Manual or the Time-Sharing User's Reference Manual.

60435400 J 1-6-31

The user should consult his job's dayfile to determine the cause of any errors that occurred
during job processing. The dayfile for the submitted job is disposed to the local batch queue
or the remote batch queue according to the disposition parameter on the SUBMIT statement.

When a user submits a batch job image from a time-sharing terminal, all output is dropped
(unless requested otherwise by the disposition parameter). This includes the dayfile output.
Therefore, the time-sharing user should make provisions within his'job to save the contents
of the dayfile if a processing error occurs. This is done by including the following control
statements at the end of the control statement record. :

Inx EXIT.
lny DAYFILE(lfn)
1nz REPLACE(lfn)

SUI STATEMENT

The SUI control statement allows a user to access a permanent file catalog without using
the USER statement.

The control statement format is:
SUI(n)

n User index desired; oinf_3777778-

The SUI statement is useful if validation is not active. Only system origin jobs may issue
this control statement. If the job is not of system origin, the following message is issued.

CPM-ILLEGAL REQUEST.

SUMMARY STATEMENT

The SUMMARY control statement gives information about the system to the user.
Three forms of the command are allowed.

The control statement formats are:
SUMMARY(OP=p1p2. + + Pps JN=jobname, FN=1fny, O=lfns)
or
SUMMARY (pyPy. - + pp)
or
SUMMARY.

The parameters and function of this control statement are identical with the ENQUIRE

statement described in this section, except that the third form of the statement
(SUMMARY.) defaults to the OP=R option.

1-6-32 60435400 J

"SWITCH STATEMENT

The SWITCH control statement sets the pseudo-sense switches for reference by the user's
program.

The control statement format is:
SWITCH(SI, Sz, PRPRPN Sn)

5i Sense switch to be set; l<sj<6. I s;=0 is specified, all.
sense switches are set.

Refer to the description of the ONSW statement for further information on sense switch
settings.

This control statement performs the same function as the ONSW control statement.

USECPU STATEMENT

The USECPU control statement specifies which central processor is to be used when more
than one is available for processing.

The control statement format is:

USECPU(n)
n=20 Either central processor is used.
n=1 CPU 0 is used.
n=2 CPU 1 is used.

The USECPU statement may be used only when the system is running on a CYBER 73-2x,
74-2x, 6500, 6700, or CYBER 174 system. On a 74-2x or 6700, CPU 0 is the parallel
processor, and CPU 1 is the serial processor. On the other systems, both CPUs are serial
processors. This statement is ignored on single CPU machines.

60435400 J 1-6-33 |

USER STATEMENT

The system uses the parameters on the USER control statement to determine if a legal user
initiated the job, which resources he is validated to use, and the extent (limits) to which he
may use those resources. Comment statements are not allowed between the job and USER
statements. If this is attempted, the first comment statement is interpreted as an illegal
USER statement, and the submitting job is aborted with appropriate messages to the dayfile.
The submitted job is dropped.

The control statement format is:
USER(usernum, passwrd, familyname)
usernum A 1- to 7-character alphanumeric user number.

passwrd Alphanumeric password. Its maximum length is 7 characters;
its minimum length is defined by the installation.

familyname Optional parameter identifying the familyt of permanent file
devices that have been or may be transferred from the user's
normra}/ system to a backup system. :

This statement defines controls and validation limits for the job and defines the user's
permanent file base. An installation may operate with secondary USER statements either
enabled or disabled. If enabled, the user may specify a different permanent file catalog
during job processing by issuing another USER statement. However, the access limits for
the user named in the first USER statement remain in effect for all subsequent USER state-
ments (refer to the LIMITS control statement in this section for information concerning
access limits). If secondary USER statements are disabled (default mode) and a secondary
USER statement is issued, the job is aborted (no exit processing). The security count for
the current user number is decremented accordingly, and the following messages are issued
to the dayfile. ‘

ILLEGAL USER CARD.
SYSTEM ABORT.

In addition, the following message is issued to the account dayfile.

SIUN, usernum.
The job is aborted, the security count is decremented, and the preceding messages are
issued if a USER statement containing an invalid user number is detected at any time,
regardless of whether secondary USER statements are enabled or disabled. In all cases,
terminal users are immediately logged off with no dayfile message issued to the terminal.
If the security count for the user is exhausted, the system issues the following message.

ILLEGAL USER NUMBER - CONTACT SITE OPR.

When this occure, the user number is denied all access to the system until the security
count has been reset by the installation personnel.

The password is deleted from the USER control statement before this statement is issued
to the dayfile.

T Refer to section 2 for a description of permanent file device families.

1-6-34 80435400 J

Normally, the familyname parameter need not be included on the USER statement. How-
ever, if the user makes a practice of specifying his family name each time he submits a job,
he can be sure that his job will be processed even if his normal system is not available and
his permanent file family is moved to a backup system. If, after the first USER statement,
the user does not specify a familyname on the USER statement, his permanent file family
remains the same. If the user specifies the 0 (zero) familyname, his permanent file family
becomes the system default family.

Example:

An installation has two systems, A and B. System B provides backup service for system A,
The system default family name for system A is AFAM, and the system default family name
for system B is BFAM.

During normal operations, system A user CWJONES with password JPWD could enter
either of the following USER statements.

USER(CWJONES, JPWD)

USER(CWJONES, JPWD, AFAM)
System B user JDSMITH with password SPWD could enter either of the following state-
ments.

USER(JDSMITH, SPWD)

USER(JDSMITH, SPWD, BFAM)

If system A failed, user CWJONES would be required to enter
USER(CWJONES, JPWD, AFAM)

to identify his family of permanent file devices. User JDSMITH could enter either of
the USER statements as before because the default family name would still be wvalid.

If the user attempts to access permanent files on a device not present in the alternate
system, one of the following messages is issued to the user's dayfile.

DEVICE UNAVAILABLE, AT nnn. This message is issued if the user's
‘ master devicef was not transferred to
the backup system.

DIRECT ACCESS DEVICE ERROR, This message is issued if the user

AT nnn. attempted to reference direct access files
on a device (other than his master de-
vice) not present in the backup system.

T Refer to section 2 for a description of permanent file device families.

60435400 J 1-6-35

FILE MANAGEMENT CONTROL STATEMENTS 7

The file management control statements enable the user to manipulate files assigned to his
job. The control statements included in this category are:

ASSIGN COPYSBF PACK SKIPFB
BKSP COPYX PRIMARY SKIPR
CLEAR DISPOSE RENAME SORT
COMMON DOCMENT REQUEST TCOPY
CONVERT EVICT RESEQ TDUMP
COPY FCOPY RETURN UNLOAD
COPYBF LIST80 REWIND UNLOCK
COPYBR LOCK ROUTE VERIFY
COPYCF LOT72 SETID WRITEF
COPYCR NEW SKIPEI WRITER
COPYEIL OoUuT SKIPF

The statements in this section allow the user to position his files, copy data from one file
to another, specify method and format of input/output, sort his files, and add correc-
tions. He can assign his files to a specific device type; change the file type, identi-
fication code, and write interlock status; and release them from job attachment. The
user can also receive information about records in a file or documentation in a file
containing COMPASS source code:

If an error is encountered in an operation on one file of a multiple file request, the

operation is not performed on the following files. For example, if an error occurs in
processing file B on the following control statement:

GET(A,B,C,D)
files C and D are not processed.

If a file is not specifically assigned through the use of an ASSIGN, LABEL, or
REQUEST control statement, the system assigns the file to available mass storage.

60435400 J 1-7-1

ASSIGN STATEMENT

The ASSIGN control statement directs the system to assign a file to the specified device
or device type. The following descriptions refer to devices other than magnetic tape.
For use of the ASSIGN statement with magnetic tape, refer to section 10.

The control statement format is:
CK})
CB

nn Device or device type to which the specified file is to be
assigned; nn may be either the EST ordinal} of a peripheral
device. or the device type as defined as follows:

ASSIGN(nn, Ifn, {

Type Equipment
DE Extended core storage
D1 844-21 Disk Storage Subsystem (half track)
DJ 844-4x Disk Storage Subsystem (half track)
DK 844-21 Disk Storage Subsystem (full track)
DL 844-4x Disk Storage Subsystem (full track)
DM 885 Disk Storage Subsystem (half track)
DP Distributive data path to ECS
DQ 885 Disk Storage Subsystem (full track)
MS Mass storage device
NE Null equipment
TT Time-sharing terminalstt

Ifn Name of the file to be assigned to the specified equipment

T Contact installation personnel for a list of EST ordinals,
Tt This device type applies only to time-sharing origin jobs,

1-7-

(8%

60435400 J

Example 1:

ASSIGN(MS, OUTPUT)
This statement assigns file OUTPUT to mass storage. With this assignment, a time-sharing
user causes output normally printed at his terminal to be written on a mass storage file
instead. Here, output means information generated by a program during execution. Day-

file messages are still printed at the terminal. Once this assignment is made, output is
written on the mass storage file QUTPUT until the file is returned or reassigned.

Example 2:

ASSIGN(TT,XYZ)
This statement assigns file XYZ to the user's time-sharing terminal. The assignment
means that input that the system would have read from file XYZ is instead solicited by a
prompt at the terminal and that output that the system would have written on file XYZ is
instead displayed at the terminal.
Example 3:

ASSIGN(DI, ABC)
This statement assigns file ABC to an 844-21 Disk Drive, if one is available.
The ASSIGN statement can also be used to create or access existing 7- or 9-track unlabeled

tapes. For a description of the statement as it applies to magnetic tape assignment, refer
to Tape Management in section 10.

BKSP STATEMENT

The BKSP control statement directs the system to bypass a specified number of logical
records in the reverse direction.

The control statement format is:

BKSP(lfn, n, m)
1fn Name of the file to be backspaced.
n Number of logical records (decimal) to backspace; if this
parameter is omitted, the system assumes n=1,
m File mode: C for coded, B for binary. If omitied, the system

assumes the file is in binary mode.

60435400 J 1-7-3

The BKSP request can be issued at any point in a logical record. If, for example, FILE1
were positioned within the third record, a

BKSP(FILE1)
request would reposition FILE1 to the beginning of the third record. The system does not
backspace past the beginning-of-information (BOI) or load point (tape file). However, EOF
indicators are considered separate records and are included in the record count. An
unrecognizable record count causes the message

ERROR IN FILE ARGUMENTS.

to be issued to the user's dayfile.

The BKSP statement has no effect on a primary file since that file is rewound before every
operation.

CLEAR STATEMENT

The CLEAR control statement releases all files currently assigned to the job. The user
can also specify files that are not to be released.

The control statement formats are:
CLEAR.
or

CLEAR(*, Lfnl. fng, ..., lfnn)

2"

The first format releases all files, The second format releases all files except those
named. If no files are named, all files assigned to the job are released.

Refer to RETURN statement in this section for the operations performed on each file type.

A CLEAR control statement should not be used in a CCL procedure because it returns the
CCL working files. Further processing of the procedure produces unpredictable results.

COMMON STATEMENT

The COMMON control statement creates or accesses a library type file (LIFT).
The control statement format is:
COMMON(Ifnl, lfnz. e Lfnn)

1fn Logical file name.

1-7-4 60435400 J

The user must be validated to access or create library files. The specified file must be
a local mass storage file. If Ifn is not local, a search is made for a library file by that
name, and an error message is issued if the file is not found. If the operation completes
successfully, the file is attached to the user's job as a library type file.

Before a local file can be made a library file, it must be locked. Refer to LOCK
Statement in this section. ‘

CONVERT STATEMENT
The CONVERT control statement converts records from one character set to another,
The control statement format is:

CONVERT(pl, Pgseees pi)

P; May be one of the following.
P=1fn1 Input on file lfnl; if omitted, file OLD is assumed.
N=1fn2 Output on file]_fnz; if omitted, file NEW is assumed,
RS=n1 Maximum record size in characters (decimal);

1 < n< 500, Ifomitted, 300 is the assumed maxi-
mum record size. (Each character is 8 bits,)

64 Convert from 63- to 64-character set; if omitted, no
conversion takes place. The TS option must be
specified if 64 is not,

TS=t Convert from old time-sharing 61-character set to new
time-sharing 63-character set; t may be one of the
following terminal types.

t Terminal Type
TTY ASCII code terminal with standard
: print.
COR Correspondence code terminal
with standard print.
CORAPL Correspondence code terminal
with APL print.
MEMAPL Memorex 1240 (ASCII code)
terminal with APL print.
BLKEDT Block transmission (ASCII code)

terminal with full display screen
editing capability and standard
print.

NAMIAF Virtual network terminal. Same
as TTY.

If t is omitted, it is assumed to be TTY. If TS is
omitted, no time-sharing conversion takes place. The
64 option must be specified if TS is not,

R Rewind input and output files prior to processing. If
omitted, no rewind takes place.

60435400 J 1-7-5 I

E’.C=n2

NM

Convert ng decimal records. If ng is omitted, convert
until an E%)F is encountered. If RC is omitted, one
record is assumed,

Used in conjunction with TS parameter and specifies

that conversion is to normal mode; if omitted, conversion
is to ASCII mode, Note the effect of conversion on the
following characters,

A (circumflex) If TS is specified, display code 70
(circumflex character) is converted
to 76, If NM is omitted, conversion
is to 7402 (ASCII mode).

: (colon) If TS and 64 are specified, display
code 63 (colon character) is con-
verted to 00, If NM is omitted,
conversion is to 7404 (ASCII mode).

The following lists legal conversion using the appropriate CONVERT parameter.

Type of Record

Legal Conversion Parameters

63-character set, nontime-sharing record 64
Old time-sharing record TS or

64 and TS
New NORMAL time-sharing record 64
(equivalent to BATCH character set)
New ASCII time-sharing record None

COPY STATEMENT

The COPY control statement copies data from one file to another if the files are within the
range of permissible formats listed in table 1-7-1,

TABLE 1-7-1.

Input

RANGE OF PERMISSIBLE FORMATS FOR THE COPY STATEMENT

Qutput

Mass Tape Formats
Storage
or 1 St S L
Terminal

Mass Storage
or Terminal

F
7
Yes Yes Yes Yes Yes %ﬁ%

T
a 1
p
e SI
F
o S
r

- m L
a
t F
s

Yes Yes Yes Yes Yes %/7//
L)

7

Yes Yes Yes Yes Yes //’}o//

Z
Yes Yes Yes Yes Yes %/%

L

////(/ 74)//
Yes Yes Yes %ﬁ%fﬂy// Yes
/4

N
0%

60435400 J

The parameters can appear in order-dependent format, order-independent format, or a

combination of both. The completely order-dependent format is:

COPY(lfnl. lfnz,

The completely order-independent format is:

x, ¢, tc, copycnt, bsize, charcnt, erlimit, P{Pg-«:Pp» lfns)

COPY(I=1fn1, O=1fn2, V=x, M=¢c, TC=te, N=copycnt, BS=bsize, CC=charcnt, EL=erlimit,
PO=p1p2. «+Pys L=U:'n3)

If order-dependent and order-independent parameters are mixed in one COPY statement,
the order-dependent parameters must appear in their proper position. All parameters are
optional. However, the specification of certain parameters precludes the application of
others. A nonapplicable parameter may be ignored or it may be illegal. This is stated in
the individual descriptions of the parameters.

The parameters are defined as follows:

Parameter -
I=Lt'n1

O=l.fn2

V=x

M=c

TC=tec

60435400 J

Description
Name of the file to copy from.
Name of the file to copy to.

If the x parameter (1 to 7 alphanumeric
characters) is present, both files are
rewound, copied, rewound, verified, and
rewound. The x parameter must not be
Zero.

M=C1 Coded mode is set on input
only.

M=C2 Coded mode is set on output
only.

M-=any other value (1 to 7 alphanumeric
characters)

Coded mode is set on both
input and output.

This parameter applies only to S and

L format tapes. If coded mode is set
on an SI tape, the system aborts the job.
For other formats, the system ignores
the mode setting.

Specifies the copy termination condition
used in conjunction with N=copycnt.

The termination condition can be specified
as follows:

Default
INPUT
OUTPUT

No verify

Binary

Copy to double EOF
(TC=D or TC=EOD)

1-7-7

Parameter Description Default

t_c Meaning

F or The N keyword specifies the
EOF number of files to copy.

Ior Copy to the end of information.
EOI The N keyword is ignored.

D or The N keyword is the number
EOD of double EOFs to copy to.

If N> 1 is specified together
with this TC value, and
verify is also selected, the
files are verified only to the
first empty file (COPY calls
VERIFY with N=0 parameter).

N=copyent Copy count used with the copy termination 1
condition specified by the parameter TC.

BS=bsize Maximum block size (in central memory If CC is not specified,
words) which specifies S or L tape PRU 1000B for S tape copy
size. This applies only when copying and 2000B for L tape
to or from S and L tapes. It cannot be copy.
specified with the CC parameter.

CC=charcnt Maximum number of characters in an Not used (the PRU size
S or L tape block. This parameter can is specified by the BS
be specified only when copying to or from parameter)

S and L tapes. The PRU size and unused
bit count are calculated from the charac-
ter count. However, the unused bit count
is used only when writing a full block to
an S or L output tape during a copy from
mass storage, I, or SI format tape.

The charent value should be a multiple

of 10. 1If it is not, the characters that
exceed the charcnt value in the last word
of the record are discarded when writing
an S or L format tape. This parameter
cannot be specified with the BS parameter.

EL=erlimit Error limit which specifies the number Zero
of nonfatal errors allowed before abort.
This includes both parity errors and
block-too-large errors which are re-
turned by the tape subsystem after com-
pleting recovery procedures. If EL=U
is specified, unlimited error processing
is allowed. Error recovery is supported
on mass storage and on all tape formats
but is not supported on a terminal or on
unit record equipment. In the latter
cases, any error aborts the job.

8 60435400 J

Parameter

PO=p1p2. <P

L=1fn3

Example:

Description

One or more of the following processing

options:

E

Input blocks with parity errors or
block-too-large errors are
processed. (copied).

Any noise blocks generated by a
copy from mass storage, I
format tape, or SI format tape
to an S or L format tape are de-
leted. This parameter cannot
be specified on any other type
of copy.

Allows record splitting during a
copy from mass storage, I
format, or SI format to S or L
format tape. This parameter
cannot be specified on any other

type of copy.

Copy files according to the copy
termination condition specified
by the keyword TC, eliminating
each EQOF on output. This option
is primarily for use with labeled
S and L output tapes since it
eliminates the conflict of the
double meaning of a tape mark
on these formats (the tape mark
on these formats serves as both

an EQF and label group delimiter).

Name of an alternate output-file to receive
parity error messages when extended error
processing is in effect {(nonzero EL speci-
fied), in which case, the file name Lfn3
must not be the same as].fn1 or 1fn2.

Default

Error blocks are

-skipped.

For S or L binary
tapes, noise blocks are
padded to noise size
with binary zeros; for
coded mode, they are
padded with blanks.

Record splitting is not
allowed.

Copy files according to
specification of the
copy termination (TC),
writing an EQF after
each file on output.

OUTPUT

The following COPY statement combines order-dependent and order-independent

parameters.

COPY(FILEIL, FILE2, VERIFY, CODED, EOF, 6, L=MYOUT, PO=E, EL=10)

FILE1 is the input file, and FILE2 the output file.

Six coded files are copied and

verified. Up to 10 nonfatal errors are allowed, and the bad data is copied with informa-
tive error messages written to the file MYOUT.

60435400 J

1-7-9

The copy statement begins a copy operation at the current position of both files unless the
verify option is specified. If verify is specified, both files are rewound before the copy
begins and rewound, verified, and rewound again after the copy is completed. (This verify
may not be meaningful if the logical structure of the two files is incompatible.)

Copy Termination

Copying continues until the copy termination condition is met or EQI is encountered. The
copy termination condition can be a file count, a double EOF count, or EQOI. If the copy is
terminated by a double EOF (for TC=EOD option), the second EOF is detected on lfn, but
is not transferred to 1fn,. If 1fn,=1fny the named file is read until the termination condi-
tion is satisfied or EOI is encountered.

If a copy specifies a file count, TC=EOF, and EOI is encountered on the input file before the
file count is satisfied, an additional EOF is written on the output file only if data or records
have been transferred since the previous EOF was written (or since the beginning of the

o

copy if no EOFs have been encouniered).

Block Sizes

Both L and F tapes may require additional field length to accommodate their maximum block
size. The maximum block size for an L tape copy is specified either by the BS=keyword

(or its default), or it is calculated from the CC=keyword. The maximum block size for an
F tape is determined by the maximum frame or character count specified when the file was
assigned. The more accurate the selection of these values which determine block size, the
less are the requirements for field length, CPU time, and I/O time.

Processing Options

The PO=D option specifies noise block processing, and the PO=R option specifies record
splitting for copies from mass storage, I format, or SI format to S or L format tapes. Due
to the incompatibilities between the -logical structure of the input and output files, records
may be encountered on the input file that are too small or too large to be copied directly to
the S or L output tape. If the output file block size is less than noise block size, it is
deleted if PO=D is specified. If PO=D is not specified, the block size is rounded to the word
multiple of noise size with binary zero fill for a binary S or L tape or with blank fill for a
coded S or L tape. Empty records on the input file are skipped since they cannot exist on
an S or L tape. If PO=R is specified and an input file record length exceeds the S or L tape
maximum block size (the PRU size as specified by BS= or its default, or by CC=), it is split
into multiple blocks. If PO=R is not specified and an input record length exceeds the S or

L tape maximum block size, the job aborts with the message

RECCRD TOO LARGE ON lfn.

The PO=M option makes it possible to copy a multifile file to a labeled S or L format tape
without writing the EOF tape marks. This avoids the conflict of a tape mark serving the
.double purpose of defining an EOF and delimiting a label group on S and L format tapes.
This is in keeping with the tendency in the computer industry to define a tape mark only as
a label delimiter.

1-7-10 60435400 J

The EL and PO=E options provide extended error processing. If EL is set to a value °
greater than zero, a parity error or a block-too-large error on the input file generates the
following message on the alternate output file.

PARITY/BLOCK TOO LARGE ERROR IN BLOCK n.

n is the decimal block count of the block in error.

COPYBF STATEMENT

The COPYBF control statement copies a specified number of binary files from one file to
another,

-

The COPYBF statement produces unpredictable
results when copying S, L, and F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The control statement format is:
COPYBF(Ifnl, lfnz. n, c)

lfn1 Name of the file to copy from; if this parameter is omitted, file
INPUT is assumed.

lfn2 ' Name of the file to copy to; if this parameter is omitted, file QUTPUT
is assumed. :

n A Number of files (decimal) on lfn1 to copy; if this parameter is omitted,
n=1 is assumed.

c If a fourth parameter (1 to 7 alphanumeric characters) is present, the
copy to or from an S or L format.tape is performed in coded rather
than binary mode. If coded mode is set on an SI tape, the system aborts
the job. For other formats, the system ignores the mode setting.

The copy begins at the current position of lfnl. If 1fnl=1fn2, the file is read until the file
count is satisfied or EOQI is encountered.

If EQI is encountered on lfn; before the file count is satisfied, an additional EOF is generated

on lfng only if data or records have been transferred since the previous EQOF was writien
(or since the beginning of copy if no EOFs have been encountered).)

60435400 J : 1-7-11

COPYBR STATEMENT

The COPYBR control statement copies a specified number of binary records from one file
to another.

The COPYBR statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The control statement format is:
COPYBR(Ifnl, lfnz. n,c)

lfnl Name of the file to copy from; if this parameter is omitted, file INPUT
is assumed.

lfn2 Name of the file to copy to; if this parameter is omitted, file OUTPUT
is assumed.

n Number of records (decimal) to copy; if this parameter is omitted,
n=1 is assumed.

c If a fourth parameter (1 to 7 alphanumeric characters) is present, the
copy to or from an S or L format tape is performed in coded rather than
binary mode. If coded mode is set on an SI tape, the system aborts the
job. For other formats, the system ignores the mode setting.

The copy begins at the current position of 1fn;. EOF indicators are considered separate
records and are included in the record count, If 1fn1=1fn2, the file is read until the record
count is satisfied or EQI is encountered.

If ECI is encountered on lfn; before the record count is satisfied, an additional EOR is

written on lfns only if data has been transferred since the previous EOR or EOF was written
(or since the %eginning of the copy if no EORs or EOFs have been encountered).

COPYCF STATEMENT

The COPYCF control statement copies a specified number of coded files from one file to
another. A coded file is defined as a file containing lines of 150 characters or less, each
terminated by a zero byte (12 zero bits in the lowest byte of a word).

1-7-12 80435400 J

The COPYCF statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The COPYCF statement cannot copy SI format
tapes. If coded mode is set for an SI tape, the

system terminates the job. The TCOPY utility
converts SI coded tape files.

The control statement format is:
COPYCF(Int, Lfnzi n, fchar, lchar)

Ifn Name of the file to copy from; if this parameter is omitted, file INPUT

1 is assumed.

lfnz Name of the file to copy to; if this parameter is omitted, file QUTPUT
is assumed.

n Number of files (decimal) to copy; if this parameter is omitted, n=1 is
assumed.

fchar First 6-bit character position of each line to copy; if this parameter is
omitted, fchar=1 is assumed.

lchar Last 6-bit character position of each line to copy; if this parameter is

omitted, lchar=136 is assumed.

The copy begins at the current position of 1fn;. If lfny=1fngy, the file is read until the file
count is satisfied or EOI is encountered. If ECOI is encountered before the file count is
satisfied, an EOF is written on lfny, and the operation terminates. If a line is encountered
that has more than lchars, the excess characters are truncated.

COPYCF writes lines with an even number of characters. If an input line has an odd charac-
ter count and the last character is a blank not immediately preceded by a colon, the last
character is removed. If an input line has an odd character count and the last character is
not a blank or is a blank immediately preceded by a colon, an additional trailing blank is
appended.

If lchar is less than fchar, lchar is greater than 150, or either fchar or lchar is unrecog-
nizable, the following error message is issued to the user's dayfile.

ILLEGAL CHARACTER NUMBER.

If COPYCF is attempted on a line longer than 150 {6-bit) characters, the following message
is issued.

NO LINE TERMINATOR.

60435400 J . 1-7-13

COPYCR STATEMENT

The COPYCR control statement copies a specified number of coded records from one file
to another. A coded record contains lines of 150 characters or less, each terminated by a
zero byte (12 zero bits in the lowest byte of a word).

The COPYCR statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The COPYCR statement cannot copy SI format

tapes. If coded mode is set for an SI tape, the
system terminates the job. The TCOPY utility
converts SI coded tape files.

The control statement format is:
COPYCR(Ifnl, Lfnz. n,fchar, lchar)

lfn1 Name of the file to copy from; if this parameter is omitted, file INPUT
is assumed. .

lf’n2 Name of the file to copy to; if this parameter is omitted, file OUTPUT
is assumed. .

n Number of records (decimal) to copy; if this parameter is omitted,
n=1 is assumed,

fchar First 6-bit character position of each line to copy; if this parameter is
omitted, fchar=1 is assumed.

lchar Last 6-bit character position of each line to copy; if this parameter is
omitted, lchar=136 is assumed.

The copy begins at the current position of 1fn,. If Ifn =lfny, the file is read until the record
count is satisfied or EQI is encountered. EO indicagors are considered separate records
and are included in the record count. If the EQOI is encountered before the record count is
satisfied, an EQF is written on lfng, and the operation terminates. COPYCR is processed
in exactly the same manner as the COPYCF control statement except that n specifies the
number of records rather than the number of files.

If COPYCR is attempted on a line longer than 150 (6-bit) characters, the following message
is issued,

NO LINE TERMINATOR.

1-7-14 60435400 J

COPYEI STATEMENT

The COPYEI control statement copies one file to another.

The COPYEI statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats. ’

The control statement format is:

COPYEI(lfnl, lfnz, X, ¢)

Ifn, Name of the file to copy from; if this parameter is omitted, file
INF;ILI is assumed.

lfn2 Name of the file to copy to; if this parameter is omitted, file
OUTPUT is assumed.

x If a third parameter (1 to 7 alphanumeric characters) is present,
both files are rewound before the copy, and rewound, verified,
and rewound again after the copy is complete.

c If a fourth parameter (1 to 7 alphanumeric characters) is present,
the copy to or from an S or L format tape is performed in coded
rather than binary mode. If coded mode is set on an SI tape, the
system aborts the job. For other formats, the system ignores
the mode setting,

The copy begins at the current position of 1fny and continues until the EOI is encountered.
The EOI is not defined for certain tape formats (refer to table 1-2-1).

If 1fn1=1fn2, the file is read until EQI is encountered.

60435400 J 1-7-15

COPYSBF STATEMENT

The COPYSBF control statement enables the user to copy a file where the first character of
each line is not a printer control character and is to be printed.

The COPYSBF statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The COPYSBF statement cannot copy SI format
tapes. If coded mode is set for an SI tape, the
system terminates the job. The TCOPY utility
converts SI coded tape files.

The control statement format is:

COPYSBF(Ifnl, lfnz, n)
lfn1 Name of the file to copy from; if this parameter is omitted, file INPUT
is assumed.
lfn2 Name of the file to copy to; if this parameter is omitted, file OUTPUT
is assumed.
n -Number of files (decimal) to copy; if this parameter is omitted, n=1 is
assumed. .

The COPYSBF routine copies n files beginning at the current position of Ifn, to file 1fny,
shifting each line image one character to the right and adding a leading space. Each line
image may contain up to 150 (6-bit) characters. Any characters beyond 150 are lost. A

l page eject character is inserted at the beginning of each logical record (refer to appendix I
for a list of carriage control characters). If lfn1=1fny, n files are skipped but no data
transfer occurs. If the EOI is encountered before thé file count is satisfied, an EOF is
written to lfnz, and the operation terminates.

If COPYSBF is attempted on a line longer than 150 (6-bit) characters, the following message
is issued. .

NO LINE TERMINATOR.

1-7-16 60435400 J

COPYX STATEMENT

The COPYX control statement enables the user to specify certain conditions when copying
logical records.

The COPYX statement produces unpredictable
results when copying S, L, or F format tapes.
The COPY utility is recommended for copying
tapes in these formats.

The control statement format is:
COPYX(lfnl. lfnz, x,b,c¢)

Ifnl Name of the file to copy from; if this parameter is omitted, file INPUT
is assumed.

lfn2 Name of the file to copy to; if this parameter is omitted, file QOUTPUT
is assumed.

X Copy specifications; if omitted, one record is copied. The value for x
may be one of the following:

X - Meaning

n Number of records (decimal) to copy.

00 Copy all records up to and including first zero-length
record. -

name Copy all records up to and including record of speci-

fied name (record name is first 7 characters of
record or the name in the prefix table, if present).

type/name Copy all records up to and including record of speci-
fied type and name (refer to Library Record Types
in section 14 for list of valid record types).

b Backspace control; if omitted, 0 is assumed.
b Meaning
0 No backspace.
1 Backspace file lfnl one record after copy completes.
2 Backspace file lfn2 one record after copy completes.
3 Backspace files lfn1 and lfn2 one record after copy

completes.
c If a fifth parameter (1 to 7 alphanumeric characters) is present, the

copy to or from an S or L format tape is performed in coded rather
than binary mode. If coded mode is set on an SI tape, the system aborts
the job. For other formats, the mode setting is ignored.

60435400 J 1-7-17

The COPYX routine copies logical records from lfn; to file Ifng at the current position of
1fn; until the condition specified by x is met. It then backspaces the files according to the
value specified by the b parameter. If an EOF or ECQI is encountered on Ifn, before the
condition specified by x is met, the operation terminates and the backspace parameter b is
ignored. If Ifn;=lfn,, the file is read until the termination condition is satisfied or an EOF
or EOI is encountered.

If ECI is encountered on lfn, before the termination condition is satisfied, an additional EOR

is written on Ifn, only if data has been transferred since the previous EOR was written (or
since the beginning of the copy if no EORs have been encountered).

DISPOSE STATEMENT 7

The DISPOSE control statement releases the specified files to the named output queues.
The control statement format is:

DISPOSE(lfn, =q,, lfn,=q,, ..., lfnn=qn/ot=usernum)

Ifn, Name of the file to be disposed. Ilfn cannot be a direct access file or
! the primary file.
9 Queue type:
PR Print
PH Punch coded 026
P9 Punch coded 029
PB Punch binary
P8 Punch 80-column binary
ot Origin type to which files are to be disposed:
BC Local batch
EI Remote batch

usernum Number of the remote batch (that is, ot is EI) user to which the
files are to be disposed (ignored if ot is BC). This parameter
is valid only if the user is allowed deferred batch jobs. Also,
usernum must match the number of the user performing the
DISPOSE on all character positions except those containing an *,

The file type for file lfn. is changed to q. in the FNT/FST entry for Ifn.. The system
then processes the file alccording to queué type. The user can dispose toded punch
files to either 026 or O29 regardless of the job's initial keypunch mode. If the system
cannot recognize q;s the following message is issued.

ILLEGAL DISPOSE CODE,

If the ot and usernum parameters are not specified, a remote batch job disposes the
files to the remote terminal from which it was submitted, and all other origin types
dispose the files to the central site output device. If ot is BC, the usernum param-
eter is ignored, and the files are disposed to the central site device.

T The user should employ the ROUTE control statement for this operation.,

1-7-18 60435400 J

DOCMENT STATEMENT

The DOCMENT control statement .enables the user to extract either the external or
internal documentation from a file containing COMPASS source code.

The control statement format is:
DOCMENT (py, pgs +« .+, Pp)

P: The parameters can be in any order and must be in one of the
! following forms.

Omitted The first default value is assumed,

a The alternate default value is assumed.

a=x X is substituted for the assumed value.

Any numeric parameter can be specified with a postradix character of either B or D,
The values that p; can assume are:

I=1fny Name of the file that contains the page footing information;
this must be a single statement in the following format,
Column(s) Contents
1 Blank
2-45 Document title
46-55 Publication number
56-60 Revision level
61-70 Revision date
S=lfngy Name of the file containing the source statement images from

which to extract the documentation. This file is rewound by
default unless the NR parameter is specified.

L=lfng Name of the file on which the output is to be written.
=nn Number of copies to be produced.
T=type Documentation type:
INT Internal documentation (detailed description of the
internal features of the software).
EXT External documentation (detailed description of the
external features of the software).
C=cc Key character for documentation.
P=pp Number of print lines per page.
NR Disable rewind on the S (source) file.
NT Negate table generator,
TC List table of contents.

60435400 J 1-7-19'

The following are the default values for the parameters described,

First Alternate
Parameter Default Default Comment
I 0 INPUT Page footing information; if I is 0,
no footing information is printed.
S COMPILE SOURCE Source statement images.
L OUTPUT OUTPUT List file.
N 1 1 Number of copies (decimal).
T EXT INT Documentation type.
C * 03 Check character (two octal digits).
P 60 80 Number of print lines per page.
NR REWIND NO REWIND Source file rewind status.
NT ON OFF Table generator status.
TC OFF ON Table of contents status.

Refer to appendix I in volume 2 for a detailed explanation of the documentation standards
followed. This appendix also contains an example of external and internal documentation
for a sample program.

EVICT STATEMENT

The EVICT control statement releases file space for the specified files but does not release
file assignment to the job.

The control statement format is:
EVICT(lfnl, 1fn2, ooy lfnn)

lfni Name(s) of the file(s) to be evicted,

The operation that EVICT performs depends on the file characteristics.

File EVICT Action

Permanent file Releases all file space except the first track and writes an EOI
on the first sector of the first track, but keeps file assigned to job.

Deferred routed Releases all file space and clears all file routing information.
queue filet
File with write Unloads file,
interlock set
All other files Writes file length on first sector of first track and releases file

space, but keeps file assigned to job. .

T Refer to the ROUTE statement in this section.

1-7-20 60435400 J

An EVICT of a tape file performs the same function as an UNLOAD and so cannot be used
to decrease the number of resource units scheduled via the RESOURC statement.

FCOPY STATEMENT

The FCOPY control statement converts a file from one code set to another. Currently, the
only supported conversion is from 6/12 display code (used in time-sharing ASCII mode) to
12-bit ASCII code. Refer to appendix A for code set definitions.’

The control statement format is:

FCOPY(P#fnl, N=lfn2, PC=csl, NC=csz, R)

P=lfn1 File to be converted (default is OLD). The user should assign Ifn1 to
the job before performing the FCOPY operation.

N=1fn2 File on which the converted data from lfny is written (default is NEW).
If 1fn2 is not assigned to the job, FCOPY creates it.

PC=cs1 Code set of 1fnj. The default and only current supported value for cs,
is ASCII, which refers to 6/12 display code.

NC=csz Code set of lfny. The default and only currently supported value for
csg is ASCII8, which refers to 12-bit ASCII code.

R If R is specified, lfn; and lfn, are rewound before and after the con-
version. If R is omitted, l.t‘n1 and 1fn2 are not rewound before or after
the conversion.

FCOPY reads Ifn,; to its EOI, preserving its EOR and EOF marks on the converted file.
The maximum line length that can be processed is 180 12-bit codes or 320 6-bit codes.
Lines that exceed the maximum length are truncated.

If 1fng is written in 6/12 display code based on the
63-character set, it must be converted to the 64-
character set by the CONVERT control statement
before its conversion by the FCOPY statement.

Files converted to 12-bit ASCII code can be listed on a local batch printer (refer to the
ROUTE control statement) but cannot be listed at a time-sharing or remote batch terminal.

Example:

A time-sharing user wanis to print a file (FILE1) created in ASCII mode. To do so, he
enters a COPYSBF statement to prefix the file lines with appropriate carriage control
characters. He then enters an FCOPY statement to convert the file containing 6/12 display
code (FILE2) to a file containing 12-bit ASCII code (FILE3). Finally, he routes the con-
verted file (FILE3) to a line printer that prints the ASCII graphic 95-character set.

60435400 J 1-7-21

/asecii
/copy,filet.
AaBbCcDdEeFfGg
HhIiJ JKkL1MmNn
EOI ENCOUNTERED.
/rewind,filel.
$REWIND,FILE1.
/copysbf,filel,file2. :
END OF INFORMATION ENCOUNTERED.
/rewind,file2.
$REWIND,FILE2.
/copy,file2.
1AaBbCcDdEeFfGg
HhIiJjKkL1MmNn
EOI ENCOUNTERED.
/rewind,file2.
$REWIND,FILE2.
/fcopy,p=file2,n=file3,r.
FCOPY COMPLETE.
/route,file3,de=1p,ec=a9.
ROUTE COMPLETE.

The following is the line printer output from the ROUTE statement.

AaBbCcDdEeFfGg
HhIiJjKkL1MmNn

LIST8O0 STATEMENT

The LIST80 routine reads a file containing list output produced by the COMPASS assembler
and compresses it to 80 columns, which fits on 8-1/2-by 11- inch printer paper.

The control statement format is:

LIST80(1.I'n1 , lfnz, NR)

Lt'n1 File to copy from; if this parameter is omitted, file LIST is assumed.
1fn2 File to copy to; if this parameter is omitted, file OUTPUT is assumed.
NR If this parameter is specified, lt'n1 is not rewound.

LOCK STATEMENT
The LOCK control statement enables the user to prevent writing on a file.
The control statement format is:
LOCK(lfnl, lfnz, e lfnn)
lfni Logical file name of a local file.
With the LOCK statement, the user can set the write interlock bit in the FNT/FST entry for
a local file. Subsequently, the system allows only read operations on the file. The file

specified must be a local file; if it is not, the following message is issued.

ILLEGAL FILE TYPE.

1-7-22 60435400 J

The LOCK statement may also be used in conjunction with the COMMON statement to
lock local files before making them library files for multiple user access. Refer to
Library Files in section 2 and the COMMON control statement in this section.

LO72 STATEMENT
The LO72 control statement allows the user to specify the reformatting of his files.
The control statement format is:

LO72(p;. Py - - - » P)

n
p; Any of the following parameters in any order:
I Reformat parameters are on file INPUT,
I=1fn1 Reformat parameters are on file Ifn..
I=0 There is no input file of reformat parameters.
If the I parameter is omitted, I=0 is assumed.
S Data to be reformatted is on file SCR.
S=]_t‘n2 Data to be reformatted is on file lfn,. If the
S parameter is omitted, SCR is assumed.
L Reformatted data is listed on file OUTPUT,
L=1fn3 Reformatted data is listed on file lfn,. If the

L. parameter is omitted, OUTPUT issassumed.
T File to be reformatted is of type B.
T=x -File to be reformatted is of type x, where x is:
‘ M Modify source data
C COMPASS source data
B Other source data
If the T parameter is omitted, B is assumed,
H Number of characters per output line is 72,
H=xxx Number of characters per output line is xxx

(maximum allowed is 150 characters). If the
H parameter is omitted, 72 is assumed.

H must be greater than or equal to the
number of characters being moved (Nx)
plus the starting column number of the
destination field (Ox).

60435400 J 1-7-23 |

LP Output is formatted for the line printer.
NR Output file is not rewound,

Nx=y Specifies the number of characters to be moved
(up to 6 fields):

x(1 to 6) Number of the field being moved
y Number of characters being moved

The follwing restrictions apply
to the H, N, IL,and O param-
eters:

(Nx+Ix). GT. 150 vyields an error
(Nx+Ox).GT.H Yields an error

H.GT. 150 Yields an error
where 1<x<8

Ix=y Specifies the field the data originates from:

x(1 to 6) Number of the field being moved

y Starting column of originating field
Ox=y Specifies the destination field the data is-going to:

x(1 to 6) Number of the field to receive data

y. Starting column of destination field
1T ‘ Suppresses query to terminal asking if user wishes

to change any of the input parameters before
processing begins, If omitted, query is issued,
This parameter is effective only from time-sharing
origin jobs.

The following shows the default values assumed for the N, O, and I parameters for the
various source types.

Type N1 11 o1 N2 12 02 N3 13 03
B 72 1 1 0 0 0 0 0 0
c 7 9 1 50 | 41 8 15 | 112 58
M 2 6 1 48 10 3 22 | 82 51

The remaining parameters of these types are defaulted to 0.

LO72 reformats files (output files in general). The user can rearrange each line (all
lines must be formatted the same) in the format he chooses, All default values com-
press output to 72 columns, which is appropriate for terminal output or 8-1/2 by 1i-inch
printer paper. If a 1 is encountered in column 1 (the page eject printer control charac-
ter), the next two lines of source data are processed as a two-line header. This
header is compressed to 72 columns for all source types. If no page eject control
characters are encountered, no headers are processed,

| 1-7-24 60435400 J

The following values apply to the first line of header and cannot be changed.

N1=42, I1=8, O1=0 (if LP not specified; otherwise, 01=1)
N2=20, 12=90, 02=42
N3=5, 13=115, 03=62
N4=5, 14=121, O4=67

The subheader lines for COMPASS and Modify listings are processed uniquely.
For B listings, the following values apply to the reformatting.

N1=43, 11=8, O1=0 (if LP not specified; otherwise, O1=1)
N2=29, 12=70, 02=43

All parameters are passed to LO72 by the control statement. If an input file is speci-
fied, LO72 reads it for additional input parameters. If the job originates from a time-
sharing terminal, and the IT parameter is not specified, the user is asked if he wishes
to change any of the input parameters. If he enters YES, the system prints the current
parameter. values and allows him to change them individually. Pressing the carriage
return key for any parameter leaves the parameter at its former value, In the follow-
ing examples, the same input parameters are entered in three possible ways.

Control Statementr:

LO72(1=0, S=SOURCE, T=B, L=OUT, N4=1, 14=2, 04=75, H=90)

Time-Sharing Terminal: (User entries are in lowercase. The symbol €® indicates
carriage return,

/1072
DO YOU WANT TO CHANGE ANY CONTROL ARGUMENT VALUES-
ENTER: YES OR NO :

? yes €®

ARGUMENT VALUE

INPUT FILE NAME: 2 @
SOURCE FILE NAME: SCR ? source €@
OUTPUT FILE NAME: OUTPUT ? out &

SOURCE FILE TYPE: BATCH ? b €®
OUTPUT LINE LENGTH: 72 CHARS.? 96 €@
NO., OF MOVED FROM MOVED TO)
CHARS. COLUMN COLUMN

_(X) (NX) (IX) (0X)
1. 72
2. g
3. G
4, 8
5. @
6. 8 o

ENTER CHANGES IN THE FOLLOWING FORMAT:

NX=AA*CR*

IX=BB*CR*

OX=CC*CR*

ETC.

TO CONTINUE, ENTER *CR* ONLY. ? n4=1 @
? i4=2 6

? 04=75

268 ®
LO72 COMPLETE.

- -X. Y- ¥
PN W]

60435400 J 1-7-25 |

Input File: (Each line in the input file must end with a terminator.)
S=SOURCE, L=0UT, T=B,
N4=1, 14=2, 04=175,
H=90,
-EOR-

NEW STATEMENT
The NEW control statement creates a primary file.

The control statement format is:

NEW (ifn/ND)
Ifn Name of file to be made primary file.
ND If this parameter is specified, other files currently assigned

to the job are not released.

The NEW statement creates an empty file and makes it the user's new primary file, Any
currently existing primary file is released.

All files assigned to the job are released unless the ND parameter is specified.

Refer to the note in PRIMARY Statement in this section for use of primary file types.

OUT STATEMENT

The OUT control statement releases output files from the control point to the output
queue.

The control statement format is:
OUT.
The only files released are those having the names

OUTPUT
PUNCH
PUNCHB
P8

or any local files belonging to one of these types. An example would be any of the
above files that had been renamed, g

The number of files released is recorded in the job's dayfile with the message
xx FILE(S) RELEASED.

where xx is the octal number of files released.

1-7-286 60435400 J

If no files with the above names or belonging to these types are found, the following message
is issued to the dayfile:

NO FILE(S) RELEASED.
This control statement is used if the user wishes to initiate printing or punching of the files
before job termination. The PUNCH file is punched in either 026 or 029 mode, depending
on the origin of the job. If the job is a local batch job, the coded deck is punched in the

initial keypunch mode of the job's control statement record. For all other job origin types,
the coded file is punched in the system default keypunch mode.

PACK STATEMENT

- The PACK control statement removes all ECR and EOF marks from a specified file and
copies it as one record to another file,

The control statement format is:

PACK(lfn,, ifn,, x)
lfn1 Name of file to be packed.
]_t‘n2 Name of file to receive packed data.
p3 If a third parameter (1 to 7 alphanumeric characters) is

specified, lfn1 is not rewound before the pack occurs.
The input file, 1fnj, may consist of any number of records and/or files. If no third
parameter is supplied, 1lfnj is read from the BOI to the EOI, and all EOR and EOF
marks are removed. It is written to file lfn, at the current position as one record.

File ifns is rewomnd after the pack;]_1E‘n1 is not. If lfn2 is not specified, file]_’c‘n1 is
packed to itself.

PRIMARY STATEMENT

The PRIMARY control statement makes a local file the primary file, or it creates an
empty primary file,

The control statement format is: .
PRIMARY(lfn)
n Name of local file.
If-1fn already exists, it must be a local mass storage file in order to be made the
primary file, If lfn does not exist, the PRIMARY statement creates it on mass

storage. Any currently existing primary file (other than the lfn specified) is released.
If the specified file is already primary, the operation is ignored.

60435400 J 1-7-21

The primary file is rewound before every opera-
tion performed on that file. Therefore, the file
manipulation statements BKSP, SKIPEI, SKIPF,
SKIPFB, andSKIPR cannot be used to position
within the file. The user should also remember
that the primary file is rewound after the comple-
tion of any of the COPY statements. An attempt

to add to the file using one of the COPY statements
may result in writing over existing data at the BOI.

RENAME STATEMENT
The RENAME control statement allows the user to change the name of a local file,
The control statement format is:
RENAME(nIfn1=01fn1, n]i‘nz =olfn2, cees nlfnn=olfnn)
nl.t'ni New name of the local file,

olfni Existing name of the local file.

The RENAME control statement changes the name of the file olfn; to nlin; in the FNT/FST.
This does not change the names of files in the permanent file system. Normally, the file
type of nifn is the same as the file type of olfn.

If a file by the name nlfn, already exists, it is returned to the system., Under certain
conditions, the system aldo changes the file type of olfn, to that of the file which was
returned. !
e If olfn. is a local mass storage file and the returned file was a print, punch,
or pri}nary type file, olfn. is renamed and its file type is changed to that of
the returned file. !

e If olfn. is a local mass storage file and the returned file was not a print,
punch,! or a primary type file, olfni is renamed but its file type is not changed.

e If olfnj is not a local file and nlfn and olfn are not the same file types or if
olfni does not reside on mass storage, an

ILLEGAL FILE TYPE,
error message is issued,

For example, the user has only two files assigned to his job. File A is a local mass
storage file, and file B is a print type file. If the user issues the following request

RENAME(X=4)

file A is renamed file X, and its file type (local) is not changed. However, if the user
issues the request

RENAME(B=A)

file B is returned to the system; file A is renamed file B and changed to print type file.

] i-7-28 60435400 J

REQUEST STATEMENT

The REQUEST statement sends a message to the system operator requesting that the named
file be assigned to the device described in the comment field.

The control statement format is:
REQUEST(lfn, {gg} Yecomment
ifn Name of the file to be assigned to the specified equipment.
CK Specifies that lfn is to be used as a checkpoint file. Each time

a checkpoint dump is taken, the new information is written at the
previous EOI of lfn.

CB Specifies that lfn is to be used as a checkpoint file. Each. time
a checkpoint dump is taken, the new information is written at the
BOI of 1lfn.

If Ifn already exists when the REQUEST is made, no new assignment is made and job
processing continues with the next control statement. However, the user can reassign
1fn by issuing a RETURN on the file before making the REQUEST.

Any user, regardless of his validation, may use the REQUEST statement to assign a
file to a mass storage device. However, to assign a file to a nonmass storage device,
the user must be validated to use nonallocatable devices.{ If the user does not have
this validation and attempts to request a nonmass storage device, the system aborts
his job,

If Ifn is to be used for checkpoint dumps, either the CK or CB keyword is specified.
These keywords are used in conjunction with the CKP and RESTART control statements;
they allow the user to:
e Save all checkpoint dumps by appending each dump to the checkpoint file:
REQUEST((lfn, CK)

e Save the last checkpoint dump by writing each dump at the beginning of the
checkpoint file:

REQUEST (lfn, CB)

e Save two consecutive checkpoint dumps by alternately writing on two checkpoint
files:

REQUEST (lfnl, CB)

REQUEST(lfnz, CB)
If the CK parameter is specified for alternate files or if more than two checkpoint files
are specified, the job is aborted and the following message is issued to the user's
dayfile, -

CHECKPOINT FILE ERROR.

T Refer to LIMITS control statement in section 6.

60435400 J 1-7-29

The CK énd CB parameters specify a checkpoint file that is local to the job. The user
can make the checkpoint file permanent by placing a DEFINE statement} before the
REQUEST.

DEFINE(lfn)
REQUEST (1fn, CK)
CKP.

The user is not required to supply a REQUEST statement to define a checkpoint file. He
can use an ASSIGN or LABEL statement or he can use default values.

I no REQUEST statement specifying a checkpoint file has been detected when the first
CKP statement is encountered, the system requests a device for the user, specifies a
file name of CCCCCCC, and selects the CK option. For a subsequent restart job,
however, the system assumes the user has made the checkpoint file available.

The REQUEST statement can also be used to create or access exiéting 7- or 9-track
unlabeled tapes. If a magnetic tape assignment is needed to satisfy a REQUEST, the

MT or NT parameter should be specified. For a description of magnetic tape assign-
ment with the REQUEST statement, refer to Tape Management in section 10.

RESEQ STATEMENT

The RESEQ control statement is used to resequence source files which have leading
sequence numbers or to add sequence numbers to an unsequenced file.

The control statement format is:

RESEQ(Ifn, t, xxx, yy)
Ifn Name of the sorted file to be resequenced. RESEQ does not sort 1fn
(refer to the SORT statement).
t Type of file:

B BASIC source code.

T Text source information; a five-digit sequence number
plus a blank is added at the beginning of each line; the
file text, however, is not inspected.

other Any number at the beginning of a line is considered a
or sequence number and is resequenced according to the
omitted xxx and yy parameters, numbers are added to lines
where no leading sequence numbers are present. This
option can be used with time-sharing FORTRAN
statements.
XXX New line number of the first statement; if this parameter is omitted,

the system assumes xxx=100.

yy Increment to be added to xxx for each succeeding line number; if this
parameter is omitted, the system assumes yy=10.

t Any mass storage file used as a checkpoint file must have write permission,

1-7-30 60435400 J

Files which have leading sequence numbers include time-sharing FORTRAN and BASIC
source files. If the file has no leading sequence numbers, five-digit numbers are inserted
at the beginning of each line. If the line number encountered or required exceeds 99999,
RESEQ issues an error message.

When resequencing a BASIC source program, the user must specify B for the file type
parameter, t, so that RESEQ changes the line number references within the source state-
ments. RESEQ supplies five-digit line numbers and line number references; excess
surrounding blanks are used in the expansion of line number references.

Example:

File X contains the following BASIC source statements.

95 ON SGN(A)+2 GOTO 100,110,120 'COMMENT
100 PRINT "A IS NEGATIVE"

105 GOTO 130 : 'COMMENT
110 PRINT "A IS ZERO"

115 GOTO 130 'COMMENT

120 PRINT "A IS POSITIVE"
130 LET B=A+1
135 END

The following statement changes the contents of file X.
RESEQ(X, B, 90, 10)
The user then rewinds and lists file X.

00090 ON SGN(A)+2 GOTO 00100,00120,00140 'COMMENT
00100 PRINT "A IS NEGATIVE"

00110 GOTO 00150 'COMMENT
00120 PRINT "A IS ZERO"
00130 GOTO 00150 'COMMENT

00140 PRINT "A IS POSITIVE"
00150 LET B=A+1
00160 END

The RESEQ statement changes the line numbers and the line number references. Line
numbers now begin at 90 and increment by 10. The comment on the first line is moved to
the right to allow for the expanded line number references.

60435400 J 1-7-31 e

RETURN STATEMENT

The RETURN control statement releases files assigned to a job and may release file space
depending on the file type.

The control statement formats are:
RETURN(lfnl, lfnz, cees lfnn)
or
RETURN(*, lfnl. lfng, ey 1fnn)
The first format returns the named files (lfn,, Ifno, ... ,1fn). The second format returns all
files assigned to the job except the named filés. If no files™are named on the second format

the asterisk specification returns all files assigned to the job. An error message is returned
if neither an asterisk.nor a file name is specified.

RETURN performs the following operations according to the file type.

Type Operation

Input The file name is changed to INPUT*. File space is not released (refer
to Input File Control in section 3 for further information).

Print File space is released, and the file is no longer assigned to the job.
(The file is not printed.)

Punch File space is released, and the file is no longer assigned to the job.
(The file is not punched.)

Local File space is released, and the file is no longer assigned to the job,

Primary Same as Local,

System File space remains, but the file is no longer assigned to the job.

Library File space remains, but the file is no longer assigned to the job.

Directaccess The write interlock is cleared. File space remains, but the file is
no longer attached to the job.

In addition, the RETURN of a magnetic tape file or the RETURN of the user's last direct
access file on an auxiliary removable disk pack decrements the resource demand count as
scheduled by the RESOURC control statement if, and only if, the total concurrent resource
demand (tapes and removable packs) has been satisfied.

To release a file without decrementing the resource demand count, the user can issue an

UNLOAD statement. To release file space without releasing the file from the job, the user
can issue an EVICT statement.

® 1-7-32 60435400 J

REWIND STATEMENT

The REWIND control statement rewinds files. A mass storage file is positioned at its BOL.
An unlabeled tape file is positioned at its load point. A labeled tape file is positioned after
the first HDR1 label for the file. If the tape file begins on a previous volume, the system
notifies the operator to mount that volume, :

The control statement formats are:
REWIND(lfnl, 1fn2, sy lfnn)
or
REWIND(*, lfnl, lfnz, ey lfnn)

The first format rewinds the named files (lfny, lfny, ..., 1fn,). The second format rewinds
all files assigned to the job except the named files. If no files are named on the second
format, the asterisk specification rewinds all files assigned to the job.

If the previous operation on the magnetic tape file was a write, a REWIND statement causes
the following operations to be performed.

1. If the tape is ANSI labeled, the system writes a tape mark, an EOF1 label, and
three tape marks and then rewinds the tape.

2. If the tape is unlabeled and the data format specified on the ASSIGN, LABEL, or
REQUEST statement is S, L, or F, the system writes four tape marks and then
rewinds the tape,

3. If the tape is unlabeled and the data format is I or SI, the system writes a tape
mark, an EQOF1 label, and three tape marks and then rewinds the tape.

Refer to Magnetic Tape Files in section 2 and to Tape Management in section 10 for further
information about tape files and to appendix G for a description of EQOF1 and EOV1 labels.

ROUTE STATEMENT

The ROUTE control statement prepares a designated file for release to an input or output
queue. The file routing requested may take effect when the statement is processed, or it"
may be deferred. If deferred, the routing characteristics specified define the handling of
the file in later job steps or at job termination. This statement also allows the user to
rescind a prior deferred ROUTE statement, changing the file type to local.

The control statement format is;
ROUTE(lfn, PysPgseces pn)

Descriptions of the statement parameters follow. The lfn parameter is required on all
ROUTE statements. .

Ifn Name of the file to route. 1fn can be an input, print, punch, or local
file; it cannot be a primary or direct access file.

60435400 J 1-7-33

The remaining parameters are order-independent.

p; Description

DC=xx Disposition code; assumes any one of the following 2-character
codes.
IN Release file to input queue. Normal job input file format

is required. If the job statement within the file is in error,
the file is not released and remains a local file. ROUTE
issues a dayfile message explaining the error.
Print codes:
LP Print on any printer
PR Same as LP
LR Print on 580-12 printer
LS Print on 580-16 printer
LT Print on 580-20 printer
Punch codes:
SB Punch system binary
PB Same as SB
P8 Punch 80-column binary
PU Punch coded
PH Same as PU
PL Plotter
sC Rescind prior routing and change the file type to local
If the DC parameter is omitted and 1fn is a deferred routed file
(refer to the FM parameter), the disposition code previously
gpecified remains in effect, If the DC parameter is omitted and

Ifn is not a deferred routed file, the default depends on the file
name specified for 1fn.

If DC is omitted and 1fn is: ROUTE assumes DC is:
OUTPUT DC=LP
PUNCH DC=PU
PUNCHB DC=SB
P8 DC=P8
Any other name DC=S8C

1-7-34 60435400 J

P; Description

DEF Indicates that routing of the file to the queué is deferred to a later
job step or end of job. If this parameter is specified, the file is
created if it does not exist. DEF is not allowed if DC=IN,

EC=xx Defines external characteristics for print or punch files.

For print files, xx can be the following.

A4 Provided for NOS/BE compatibility.
Ab ASCII 64-character set.

A9 ASCII 95-character set.

B4 Provided for NOS/BE compatibility.
B6 Display code 63/64-character set.

For punch files, xx can be the following.

Asclu Punch ASCII.

026 Punch 026 mode.
029 Punch 029 mode.

SB Punch system binary.

80COL Punch 80-column binary.

If an invalid external characteristic is speci-
fied, the queue file processor cannot output
the file. The user must not specify a print
file characteristic for a punch file or a punch
file characteristic for a print file. He also
must not specify an external characteristic
not available at the site. If EC is not speci-
fied, an appropriate EC default is set on the
basis of the DC parameter setting and in-
stallation options.

FC=xx Forms code; specifies routing to the output device that the system
operator assigned the forms code xx. This parameter prevents
output of a file before its special forms are placed in the output
device. XX can be any 2 alphanumeric characiers, but the com-
binations null, AA, AB, AC, AD, AD, AE, and AF give maximum
system efficiency. A value of null results when no FC parameter
is specified.

FID=xx An NOS/BE parameter included for compatibility. It produces an
informative message under NOS.

FM Implicit remote routing (refer to the following note).

60435400 J 1-7-35 @

FM = xx

IC=xx

ID=xx

ID

PRI=xx

REP=xx

SC=xx

ST=xx

TID

TID=C

TID=xx

UN

UN=xx

. Description

1 to 7 alphanumeric character family name; indicates routing to a
remote batch terminal logged in with the specified family name.
The note following the ROUTE parameter descriptions describes
the default procedures.

Internal characteristics; specifies one of the following,
DIS Display code
ASCII ASCII code
BIN Binary

This parameter is normally not specified since its default is
automatically established through the disposition code DC.

Selects local device ID from 0 to 67 (octal default)., This is
identical to the ID specified by the SETID control statement.

Implicit central site routing (refer to the note at the end of the
parameter descriptions).

File priority. This is a NOS/BE parameter included for com-
patibility. It produces an informative mesgsage under NOS,

The number of additional file copies to be routed to a destination.
The range for xx is from 0 to 31; therefore, the number of

copies that can be sent ranges from 1 to 32. Values for xx beyond
its range are set to zero, an informative message is set, and

one copy is routed to the destination,

Spacing code for the 580-PFC printer. This is a numeric value
from 0 to 77 (octal default).

Station ID. This is a NOS/BE parameter included for compati-
bility. It produces an informative message under NOS.

Implicit remote routing (refer to the note at the end of the
parameter descriptions).

Central site routing, This is a NOS/BE parameter included for
compatibility. Its action is identical to the ID parameter.

Terminal ID. This form of the TID parameter is included for
NOS/BE compatibility. Under NOS, it is processed the same
as TID; however, an informative message is issued stating that
xx is ignored.

- Implicit remote routing (refer to the note at the end of the

parameter descriptions).

Specifies the user number of the remote batch user to whom the
named file is routed. The parameter xx ig valid only if it
matches the user number of the uger performing the route.

The matching is character for character except for those posi-
tions containing an * (refer to the note at the end of the param-
eter descriptions).

60435400 J

For remote batch origin (EIOT) jobs, the following action is
taken.

e Parameter ID, ID=xx, or TID=C causes routing to the
central site.

¢ Parameter FM, TID, or UN with no argument causes
routing to the terminal of origin.

e The omission of FM, TID, or UN causes routing to
the terminal of origin.

e Parameter FM or UN with legal arguments causes
routing to the specified terminal.

For jobs of any origin other than EIOT, the following action is
taken.

e Parameters ID, ID=xx, and TID=C causes routing to
the central site.
° Specifying UN, TID, or FM without parameters causes

routing to the terminal specified by the job's FM and
UN at the time of the ROUTE call.

e Specifying UN or FM with legal arguments causes
routing to the selected remote terminal,

If a job is routed to the input queue with an illegal USER control statement, the following
message is issued

DSP - ILLEGAL USER CARD.
SYSTEM ABORT.

and the job is aborted with no error exit processing or if submitted from a terminal, the
terminal is logged off. The security count for the user number that did the ROUTE is de-
cremented accordingly.

SETID STATEMENT!

The SETID control statement assigns a new identification code for the specified file.
The control statement format is:

SETID(lfn1=x1, lfnz X9seens lfn, =xn)
Rni
x; New identification code for the file (0 through 67g). This code must
match the device identification code specified in the EST. (The
installation establishes the device identification codes.)

Logical file name.

The identification code allows the user to route his file to an output device or device group
with the same identification code. This is useful when a print file requires special forms.

The file LFN; must be an input (INFT), local (LOFT), prmt (PRFT), or punch (PHFT) type
file, or the following message is issued.

ILLEGAL FILE TYPE

T The ROUTE control statement should be used to perform this operation.

60435400 J ' 1-7-37 |

SKIPEl STATEMENT

The SKIPEI control statement directs the system to position the specified file at the EOI.
The control statement format is:
SKIPEI(lfn)
1fn Name of the file to be positioned,
On magnetic tapes where no EOI is defined, the operation stops at an EOF.,

The SKIPEI statement has no effect on a primary file since the file is rewound before
every operation,

SKIPF STATEMENT

The SKIPF control statement directs the system to bypass, in a forward direction; t

the
specified number of files from the current position of the named file.

The control statement formai_; is:

SKIPF(lin, n, m)
in Name of the file to be positioned.
n Number (decimal) of files to be skipped; if the parameter is
omitted, the system assumes n=1.
m File mode: C for coded, B for binary. . If omitted, the system

assumes the file is in binary mode. If coded mode is set on
an SI tape, the system aborts the job.

If an EOI is encountered before n files are bypassed, file 1fn remains positioned at
the EOI.

The SKIPF statement has no effect on a primary file since the file is rewound before
every operation,

SKIPFB STATEMENT

The SKIPFB control statement directs the system to bypass, in the reverse direction,
the specified number of files from the current position of the named file,

The control statement format is:
SKIPFB(lfn, n,m)
1fn Name of the file to be positioned.

n Number (decimal) of files to be skipped; if the parameter is
omitted, the system assumes n=1,

m 1 File mode: C for coded, B for binary. If omitted, the system

assumes the file is in binary mode. If coded mode is set on
an SI tape, the system aborts the job.

| 1-7-38 60435400 J

The system does not backspace past the beginning-of-information (BOI) or load point
(tape file) in the event that BOI or load point is encountered before n files are hypassed.

The SKIPFB statement has no effect on a primary file since the file is rewound before
every operation,

SKIPR STATEMENT

The SKIPR control statement directs the system to bypass, in a forward direction, the
specified number of logical records from the current position of the named file.

The control statement format is:

SKIPR(Ifn, n, 2, m)

lfn Name of the file to be positioned.

n Number (decimal) of records to be skipped; if this parameter
is omitted, the system assumes n=1,

‘ EOR level; 0<f<17. If 0<2<18, the system assumes ! =0,
If £ =17, n indicates the number of files to skip rather than
records.

m File mode: C for coded, B for binary. If omitted, the system

assumes the file is in binary mode. If coded mode is set on
an SI tape, the system aborts the job.

EOR marks are considered separate records and included in the record count. If the
EOI is encountered before n records are bypassed, file Ifn remains positioned at the
EOI.,

The SKIPR statement has no effect on a primary file since the file is rewound before
every operation.

SORT STATEMENT

The SORT control statement enables the user to sort a file of line images or statements
in numerical order based on leading line numbers consisting of a specified number of
digits.

The control statement format is:
SORT(1fn, NC=n)

1fn Logical file name of the file to be sorted; lfn may be a local
file or a direct access permanent file,

n Number of leading line number digits on which the file is to
be sorted; n < 10. If the NC parameter is omitted, the
system assumes n=5,

In the case of duplicate line numbers, all lines other than the first are considered

correction lines, All lines with the same number are deleted from the file except the
last line encountered.

60435400 J 1-7-39 |

For input from a time-sharing terminal, SORT deletes a line image or statement if a line
number is followed by an empty line or a line number is followed by a blank and a carriage
return. : .

For batch input, SORT deletes a statement or line image if a card containing only the line
number is submitted.

If a line number contains more than n digits, the user can delete the line either by entering
the first n digits of the line number and pressing the carriage return (terminal input) or by
submitting a card containing only the first n digits of the line number (batch input).

After the sort, Ifn is packed and set at EQI.

TCOPY STATEMENT

I The TCOPY control statement copies X (external) format binary tapes or E (line image),
B (blocked), or SI (system internal) format coded tapes to mass storage, to an 1 format
tape, or to an SI binary format tape. It also writes E or B format tapes converted from files

" on mass storage, I format tape, or SI format binary tape. The X binary and E, B, and SI

coded tape formats were supported under earlier versions of NOS. Now, to access data or
write data in one of these formats, the tape must be assigned as an S (stranger) format tape
(refer to the tape assignment statements in section 10) and the file copied using the TCOPY
statement.

The parameters on the TCOPY control statement can appear in order-dependent format,
order-independent format, or a combination of both. The completely order-dependent
format is:

I TCOPY(lfnl. lfnz, format, tc, copyent, charent, erlimit, PPy, Ifn3)
The completely order-independent format is:
l TCOPY(I=1lfn,, O=lfng, F=format, TC=te, N=copyent, CC=charent, EL=erlimit, PO=p;py,
L=1fng3)

If order-dependent and order-independent parameters are mixed in one TCOPY statement,
the order-dependent parameters must appear in their proper position, All parameters are
optional. However, the specification of certain parameters precludes the application of
others. A nonapplicable parameter may be ignored or it may be illegal. This is stated in
the individual descriptions of the parameters.

The parameters are defined as follows:

Parameter Description Default
I=lfn1 Name of the file to copy from. INPUT
O=1fn2 Name of the file to copy to. OUTPUT
F=format Data format that specifies the type of X

conversion for the copy operation., This
can be any one of the following.

1-7-40 60435400 J

Parameter

TC=tc

60435400 J

format

E

Si

F or
EOF

Description

Conversion

Copy an E format tape to mass
storage, an I, or an SI binary
tape file, or generate a new E
format tape from mass storage,
an I, or an SI binary tape file.
The E tape must be unlabeled
and assigned as S format.

Copy a2 B format tape to mass
storage, anl, or an SI binary
tape file, or generate a new B
tape from mass storage, anl,
or an SI binary tape file. The
B tape must be unlabeled and

assigned as S format.

Copy an X format tape to mass
storage, an I, or an SI binary
tape file. The unlabeled input
tape must be assigned an S
format, with noise size of 8
for 7-track or 6 for 9-track
tape (refer to NS parameter
on tape assignment control
statement).

‘Copy an SI coded format tape

to mass storage, an 1, or an
SI binary tape file. The
labeled or unlabeled input tape
must be assigned as S format,
with noise size of 8 for 7-track
or 6 for 9-track tape (refer to
NS parameter on tape assign-
ment control statement). SI
coded input tape is completed
before EQI is encountered, the
position of the input tape after
the copy is indeterminate.
This is because control words
are used on the SI coded tape
read via S format (EOF on an
SI coded tape is a level 17g
block terminator, whereas
EOF on an S tape is a tape
mark).

Specifies the copy termination condition used
in conjunction with N=copycnt. The termi-
nation condition can be specified as follows:

When this TC value is set, the
N keyword specifies the number
of files to copy.

Default

Copy to double EQOF
(TC=D or TC=EOD)

1-7-41 I

Parameter

N=copycnt

CC=charcnt

EL=erlimit

PO=p,p,

L=l.t‘n3

1-7-42

Description
Ior This specifies a copy to the end
EOI of information. The N keyword
is ignored.
Dor When this TC value is set, the
EOD N keyword is the number of

double EOF's to copy to.

Copy count used by the copy termination
condition TC.

The character count which determines max-
imum block size (line length) in characters
for an E or B format tape. This parameter
can only be specified on an E or B format
tape copy.

Error limit which sets the number of non-
fatal errors allowed before abort. This
includes parity errors and block-too-large
errors which are returned by the tape sub-
system after completing recovery proce-
dures. It also includes illegal block for-
mat errors (invalid byte-count and/or
unused bit count) for X format and SI
coded format tapes. Error limit is ig-
nored when generating an E or B format
tape from mass storage, an I format,

and an SI binary format file since control
word read is not used. Error limit is
likewise ignored if the input file device
does not support conirol word read
(terminals). In that case, any error
aborts the job.

One or both of the following processing op-
tions (not separated by commas).

E Input blocks with parity errors
or block-too-large errors are
processed (copied).

T When generating a B or E
format tape, blocks exceeding
the maximum block size (refer
to the CC parameter) are
truncated. PO=T is illegal for
other file conversions.

Name of an alternate output file to receive
parity error messages when extended error
processing is in effect (nonzero EL speci-
fied), in which case, the file name lfng
must not be the same as 1fn2.

Default

136 characters for E
format; 150 characters
for B format.

Zero

Error blocks are

skipped.

Lines exceeding the
maximum line size are
split into multiple

blocks.

OUTPUT

60435400 J

Example:

The following TCOPY statement combines order-dependent and order-independent
parameters:

TCOPY(TAPE1, FILE2,E, CC=200,EL=12)

The input file TAPEL is an E format tape (assigned as an S format tape). It has a
maximum of 200 characters per line. The copy terminates when a double EOF is en-
countered (default). The output file FILE2 can be a mass storage file or an I or SI
binary format tape. The error limit allows up to 12 nonfatal errors (parity/block-too-
large), and the bad data is skipped (default) with informative error messages written
to the file OUTPUT (default).

The TCOPY statement begins a copy operation at the current position of both files and
continues until the copy termination condition is met or EOI is encountered. This termina-
tion condition can be a file count, double EOF count, or EOI. If the copy is terminated by

a double EOF (for TC=EOD option), the second EOF is detected on lfnj but is not transferred
to 1fng. If lin;=lfngy, the named file is read until the termination condition is satisfied or
EOI is encountered. An SI coded tape can be positioned correctly only to EOI (refer to the
F=SI parameter description).

If a copy specifies a file count TC=EOF, and EOI is encountered on the input file before the
file count is satisfied, an additional EOF is written on the output file only if data or records
have been transferred since the previous EOF was written (or since the beginning of the
copy, if no EOFs have been encountered).

The EL or PO=E options provide extended error processing. This allows the processing
or skipping of blocks with parity errors or block-too-large errors., If EL is set to a
value greater than zero, a parity error or block-too-large error on the input tape
generates the following message on the alternateoutput file.

PARITY/BLOCK TOO LARGE ERROR IN BLOCK n.

n is the decimal block count of the bloek in error. The block count for the first block to be
copied is initially set to zero and is incremented by 1 for every block and every EOF
processed. For X and SI coded formats, an illegal block format error (illegal byte count
and/or unused bit count) produces the following message on the alternate output file.

ILLEGAL FORMAT IN BLOCK n.

When creating a B format tape from a mass storage, I, or SI binary format file, a block
shorter than the noise size specified on the tape assignment statement is blank filled to the
noise size, A noise block could also be generated when a block exceeding the maximum
block size for the B format tape is split into multiple blocks. If the PO=T parameter is
specified, blocks exceeding the maximum block size are truncated.

When creating an E format tape from a mass storage, I, or SI binary format file, blocks
that exceed the maximum block size for the E format tape are split into multiple blocks. If
a continuation block contains only the end-of-line indicator (zero word), the continuation

block is discarded. If the PO=T parameter is specified, blocks exceeding the maximum block

size are truncated (all continuation blocks are discarded).

60435400 J 1-7-43

TDUMP STATEMENT

The TDUMP control statement lists a file in octal and/or alphanumeric format. It dumps
the entire file or the specified number of lines, records, or files. If more than one limit
is set, the limit reached first overrides the others.

TDUMP produces unpredictable results when
dumping an S, L, or F format tape file. The
user should use the COPY statement to convert
the S, L, or F format tape file to a mass
storage file or to an I or SI binary format tape
file before attempting to dump the file using
TDUMP.

The control statement format is:

TDUMP(pl. Pz’ csas pn)

P; - ’ Any of the following in any order:

I=lfn1 1 to 7 alphanumeric characters naming the local file to be
dumped (default is TAPE1).

L=lfn2 1 to 7 alphanumeric characters naming the local file to which
the output is written (default is OUTPUT). If Ifng is not a
local file, TDUMP creates it. It does not rewind lt‘n2
following the dump.

(o] Octal dump only.

A Alphanumeric dump only.

If both O and A are specified, the last one overrides. If
neither O nor A is specified, TDUMP lists both an octal and
an alphanumeric dump.

R=rcount Maximum decimal number of records to be dumped. IfR is
omitted or set to zero, the dump continues to EOI.

[nore]
The record count restarts at each EOF.
F=fcount Maximum decimal number of files to be dumped. If F is

1-7-44

omitted, the dump continues to EOI. If F=0, dump continues
until an empty file (double EOF) or EOI is encountered,

60435400 J

N=lines Maximum decimal number of lines to be dumped. If N is
' omitted or set to zero, the dump continues to EOL. The blank
line output with the end of record, end of file, end of informa-
tion, and ABOVE LINE REPEATED messages is included in
the line count.

NR Do not rewind file lfn1 before dump (default is to rewind lfnl).

Example:

Two lines, each containing the alphabet, were input to file X from a time-sharing
terminal. File X was dumped to file Y producing the following output.

« FILE DUMP - TDUMP, IzX,LsY. 78/10/23. 08.05.51. PAGE 1.
F TR 1W 0~ 0102 03084 0506 0710 1112 1314 1516 1720 2122 2324 2526 2730 3132 0000 0000 0102 030% 0506 0710 1112
CD EF GH 1J KL MmN ST UV Wwx Y2 4B CD EF GH IJ

AB

F 1R 1¥ - 1318 1516 1720 2122 2328 2526 2730 3132 0000 0000
KL % OP QR ST UV WX Y2

== END OF RECORD -

o= END OF INFORMATION o~
«= END OF DUMP o=

The prefix
F 1 R 1W 0

means file 1, record 1, word 0. The zeros following each alphabet indicate the end of
a terminal line, .

UNLOAD STATEMENT

The UNLOAD control statement releases files assigned to the job and may release file space
(depending on the file type).

The control statement formats are:
UNLOAD(lfnl. lfnz. P lfnn)
or

UNLOAD(*%, l.fnl. 1fn2, cens lfnn)

The first format unloads the named files (1fn,, Ifny,...,En). The second format unloads
all files assigned to the job except the named files. If no fﬁes are named on the second
format, the asterisk specification unloads all files assigned to the job.

The UNLOAD statement performs the same function as the RETURN control statement

except as noted below. Refer to the description of the RETURN statement given earlier in
this section to determine the operation periormed for each file type.

60435400 J 1-7-45

The UNLOAD statement differs from the.RETURN statement if the file being unloaded is a
magnetic tape file or a direct access file residing on an auxiliary removable pack and the
job requires more than one tape or pack resource concurrently. In this case, the UNLOAD
statement does not decrease the number of tape/pack resources scheduled for the job with
the RESOURC control statement.

For magnetic tape files, if the previous operation was a write, the UNLOAD statement -
causes the following operations to be performed.

If the tape is ANSI labeled, the system writes a tape mark, an EQF1 label, and
three tape marks and then unloads the tape.

If the tape is unlabeled and the data format épecified on the ASSIGN, LABEL, or
REQUEST card is S, L, or F, the system writes four tape marks and then unloads
the tape.

If the tape is unlabeled and the data format is I or SI, the system writes a tape
mark, an EOF1 label, and three tape marks and then unloads the tape.

l Refer to Magnetic Tape Files in section 2, and Tape Management control statements in
section 10 for further information about tape files and to appendix G for a description of an
EOF1 label.

UNLOCK STATEMENT

The UNLOCK control statement rescinds the LOCK command and clears the write interlock
- bit for the specified file.

3

The control statement format is:

UNLOCK(I.fnl. lfnz. cees 1fnn)

l.fui Name(s) of local file(s)

" The file must be a local file; if it is not, the following message is issued.

ILLEGAL FILE TYRE.

Library files cannot be unlocked.

1-7-46

60435400 J

VERIFY STATEMENT

The VERIFY routine performs a binary comparison of all data from the current position
of the files specified. The comparison is meaningful if the files are within the range of
compatible formats listed in table 1-7-2.

The control statement format is:

VERIFY(lfnl, 1fn2. PysPgsreces pn)

1fn

1 Name of the first file; if this parameter is omitted, TAPEL is assumed.

lfn2 Name of the second file; if this parameter is omitted, TAPE2 is

assumed.

p; Any of the following in any order:

N=0

N=x

E=y

L=1lin

C1

BS=bsize

60435400 J

Verify terminates on the first empty file encountered
on either file.)

Verify x files; default is N=1,

Verify terminates when end of information is en-
countered on both files.

List the first y errors encountered on the comparison.
If E is omitted, the system assumes E=100,

Same as E=0, no errors are listed.

List errors on file fng. If L is omitted, the system
assumes L=OUTPUT.

Abort after verify completed if errors occurred.
Rewind both files before and after the verify.

Coded file mode is set on both files, This is
applicable only to S and L format tapes. If
coded mode is set on an SI tape, the system
aborts the job.

Coded file mode is set on the first file only.
This is applicable only to S and L format tapes.
If coded mode is set on an SI tape, the system
aborts the job.

Coded file mode is set on the second file only.
This is applicable only tc S and L format tapes,
If coded mode is set on an SI tape, the system
aborts the job.

Defines the maximum block size (PRU size) in
central memory words for an S or L tape. This
parameter is legal only for S and L tape verifies.
The default for an S tape is 10008 words, and for
an L tape, it is 20008 words.

1-7-47

Whenever words on 1fn; and 1fny do not match, VERIFY lists the following,
e Record number
e Word number within the record
e Words from both files that do not match
If excess records are encountered on lfn; or liny, the following message is listed.
n EXCESS RECORD(S) ON Ifn.
n is the decimal number of excess records. The title line of the error list file contains
the decimal number of the logical file being verified. If a nonstandard file (one in which an

EQI or EOF is not preceded by an EOR) is compared with a standard file, VERIFY lists
the following message.

T EOR MISSING ON ifn
r Record number in decimal
1fn Name of the nonstandard file

If EOI is encountered on one input file (1fn or 1fny) and there are still files remaining on
the other input file, each excess file generates the following message. ~

n RECORD(S) IN EXCESS FILE m ON lfn,

n is the decimal number of excess records in logical file number m.,

If errors are encountered, the following warning message is issued to the user's dayfile,
VERIFY ERRORS.

If any pair of 1fny, lfn,, and Ufng are identical, the following fatal message is issued.
FILE NAME CONFLICT.

If Ifny or 1fny did not exist prior to the verify, the following warning message is issued.

FILE NOT FOUND - lfn. ‘

B 1-7-48 60435400 J

In a verify operation involving S, L, or F.format tapes, VERIFY first clears the extraneous
data in the last word of each block (as specified by the byte count and the unused bit count)
and then makes the comparison. On these formats, every block is considered a record
(returns EOR status).

If a verification of an L. or F format tape requires additional field length, VERIFY increases
the field length as needed. If the field length requirement exceeds the user's maximum
field length, the verify is aborted with the error message:

VERIFY FL ABOVE USER LIMIT,
The maximum block size for an L format tape is specified by the BS=keyword or its default.
The maximum block size for an F format tape is calculated from the frame or character
count specified on the control statement when the file is assigned.

A verify operation is not guaranteed when the logical structure of the two files is incompat-
ible. Before VERIFY makes a comparison of such files, it issues the warning message:

FILE STRUCTURES NOT COMPATIBLE,

TABLE 1-7-2. COMPATIBLE FILE STRUCTURES FOR THE VERIFY STATEMENT

OUTPUT MEDIA FORMAT

Tape Formats
Mass
Storage I SI S L F
Mass Storage Yes Yes Yes No No No
T
A I Yes Yes Yes No No No
P
E SI Yes Yes Yes No No No
INPUT
MEDIA g S No No No Yes No No
R
FORMAT M L No No No No Yes No
A
g F No No No No No Yes

The No entries indicate that the logical structures of the
files compared are incompatible. VERIFY may accept
those combinations, but the results require the user to
make a knowledgeable correlation of results with the
format descriptions in section 10. In some cases, the
verify of an incompatible pair may result in a VERIFY
GOIOD r(xilessage; otherwise, a VERIFY ERRORS message
is listed.

60435400 J 1-7-49 |

WRITEF STATEMENT .

The WRITEF control statement directs the system to write a specified number of file marks
on the named file.

The control statement format is:

WRITE(lfn, x)
1fn Name of the file to be written on.
b4 Number of filemarks to be written; if this parameter is omitted,

the system assumes x=1.
If the last operation to the file was a write that did not end with the writing of an EOR or

EOF, WRITEF writes a record mark before it writes the specified mumber of file marks.
For all other cases, WRITEE writes the file marks without a preceding record mark.

WRITER STATEMENT

The WRITER control statement directs the system to write a specified number of empty
records on the named file.)

The control statement format is:

WRITER(lfn, x)
fn Name of the file to receive the empty records.
x Number of empty records to be written; if this parameter is omitted,

the system assumes x=1,

J 1-7-50 60435400 J

PERMANENT FILE CONTROL STATEMENTS 8

The permanent file control statements allow the user to utilize the permanent file system. T
The control statements included in this category are:

APPEND DEFINE PERMIT SAVE
ATTACH GET PURGALL

CATLIST - OLD PURGE

CHANGE PACKNAM REPLACE

The statements described in the following section allow the user to create permanent files
(DEFINE) and make local files permanent (SAVE, REPLACE). These files can be
accessed (ATTACH, OLD, GET), added to (APPEND), and released (PURGE, PURGALL).
Requests are directed to a specified auxiliary device by the PACKNAM statement. Certain
parameters can be changed with the CHANGE statement without attaching and redefining

the file or retrieving and saving it.

Information on permanent files is obtained through the CATLIST statement. Part of that
information is the permission status of the user as granted by another user by means
of the PERMIT statement,

The following pages list options available on the control statements. Unless otherwise
stated, the options described apply to all of the permanent file control statements. All
file names must be 1 to 7 alphanumeric characters, For a detailed description of
permanent file structure, refer to section 2. Errors encountered during permanent
file control statement processing cause error messages to be issued to the user's day-
file. For a description of these messages, refer to appendix B,

+ The batch user cannot access permanent files unless he has included a USER statement
in the job deck.

60435400 H 1-8-1

1-8-2

Keyword

UN=

PwW

CT-=

Option

usernum

passwrd

ct

Descrigtion_

Alternate user number. ‘This parameter is neces-
sary only if the permanent file involved resides in
another user's catalog. To be able to access other
catalogs, the user must be granted explicit per-
mission (refer to the PERMIT control statement),
the file must be a semiprivate or public file, or
the user must have automatic permission. A user
has automatic permission to files in catalogs of
other users if his user number contains asterisks,
and all nonasterisk characters match the other
user's user number, »

The UN keyword is used to establish alternate
access validation (that is, PERMIT checking and
catalog mode/category checking) even if the speci-
fied user number is the one under which the job

is currently being run.

The user has the option of specifying a 1- to 7-
character password for a file. This password
must be specified whenever alternate users access
the file.

The user has the added security of specifying a 1-
to 7-character password for a file by including it
as a single-line record in the INPUT file. This
password must be specified whenever alternate
users access the file,

Permanent files fall into three categories which
specify the method of access. This option must
be selected when the file is saved, defined, or
changed. The categories are:

P Private files are available for

or access only by the originator or

PRIVATE those to whom the originator has
explicitly granted permission (re-
fer to the PERMIT control

statement).
S ‘ Semiprivate files are available for
or access by all users who know the
SPRIV file name, user number, and

password. The system records
in the originator's catalog the
user number of each user who
accessed the file, the number of
accesses, and the date and time
of the last access.

PU Public files are available for ac-
or cess by all users who know the
PUBLIC file name, user number, and pass-

word., The system records the
number of times the file was ac-
cessed but does not record user
numbers or the last access date
and time.

60435400 J

Keyword

60435400 J

Option

Description

Permanent file or user permission modes:

E
or
EXECUTE

or
READ

RA
or
READAP

RM
or
READMD

A
or
APPEND

M
or
MODIFY

Allows the user to execute the
file. To execute a file assigned
to the user's job in EXECUTE
mode, the file must either be in
absolute format or in a relocat-
able format that can be loaded
and executed via a file name call
statement (such as LGO) which
is not preceded by a loader con-
trol statement.

Allows the user to read and/or
execute the file, Up to 83 users
can access a file concurrently in '
R mode.

Allows the user to read and/or
execute the file. For indirect
access files, RA permission is
the same as R permission. For
direct access files, it allows the
user to read and/or execute the
file while another user is con-
currently accessing the file in
APPEND mode. Up to 63 users
can access a file concurrently in
RA mode.

Allows the user to read and/or
execute the file. For indirect
access files, RM permission is
the same as R permission. For
direct access files, it allows
the user to read and/or execute
the file while another user is
concurrently accessing the file
in MODIFY or APPEND mode.
Up to 4095 users can access a file l
concurrently in RM mode,

Allows the user to read, exe-
cute, and/or append the file.
Appending a file means adding
data at the end of the file (EOI).
Data within the original file
boundaries cannot be changed.

Allows the user to read, execute,
append, and/or modify the file.
For indirect access files, MODI-
FY permission is the same as
APPEND permission. For di-
rect access files, MODIFY per-
mission means that the file can
be changed or lengthened but not
shortened.

1-8-3

Keyword Option Description

w Allows the user to read, execute,

or append, modify, write, and/or

WRITE purge the file. The file can be
shortened, lengthened, or
replaced.

N Removes permission previously

or granted via PERMIT control

NULL statements.

Special care should be taken when using READMD or READAP mode. Programs using
access techniques (either the input/output macro or CYBER Record Manager) which do not
expect concurrent updating of a file may get erroneous results if these modes are used.

CYBER Record Manager Advanced Access Methods (refer to the AAM Reference Manual)
does not anticipate concurrent updating of a file by another user. Therefore, if a file has
béen attached in either READMD or READAP mode and these access methods are being
used, a warning diagnostic message is issued stating that the file is bad when, in fact, it
is not.

Keyword Option Description
Ss= subsystem Specifies the time-sharing subsystem to be associ-

ated with the file. One of the following subsystems
or its abbreviation may be specified on a SAVE or
CHANGE control statement. -

subsystem Meaning Abbreviation
BASIC BASIC subsystem BAS
BATCH Batch subsystem BAT
EXECUTE Execute subsystem EXE
FORTRAN FORTRAN 5 FOR
FTNTS FORTRAN Extended 4 FTN
NULL NULL subsystem NUL

In batch jobs, if the SS parameter is omitted or
specified without a subsystem, the NULL subsystem
is associated with the file.

In time-sharing jobs, if the SS parameter is speci-
fied without a subsystem, the currently active sub-
» system is associated with the file. If the SS param-
eter is omitted, the NULL subsystem is associated
with the file, unless the file is the primary file. In
that case, the current subsystem is associated with

the file.

1-8-4 . 60435400 J

Keyword Option Description

PN= packname A 1- to T-character pack name used in conjunction
with the R keyword to identify the auxiliary device
to be accessed in the permanent file request, This
parameter is specified only when the file to be
accessed resides on an auxiliary device. If the
device is currently not available and the NA key-
word was not specified, the following message i$
issued to the user's dayfile,

DEVICE UNAVAILABLE, AT nnn.

An auxiliary device is a mass storage device that
supplements the normal family of permanent file
devices. A RESOURC control statement must be
included in any job that uses two or more disk
packs concurrently.

S= space Specifies the amount of space in decimal PRUs
desired for the direct access file. Refer to the
DEFINE control statement,

R=) r Specifies the type of device on which the permanent
file resides or is to reside; r can be any of the
following.

r » Device

DE ‘Extended Core Storagefy

DIi 844-21 Disk Storage Subsystem
(1<i <8) (half track)

DJi 844-4x Disk Storage Subsystem
{1<i<8) (half track)

DKi 844-21 Disk Storage Subsystem
{1<i<8) (full track)

DLi 844-4x Disk Storage Subsystem
(1<ig8) (full track)

DMi 885 Disk Storage Subsystem
(1<ig3) (half track)

DQi 885 Disk Storage Subsystem
(1<ig3) (full track)

DP Distributive Data Path to ECS+¥

The R keyword can be used in two ways.

. It can be used on the DEFINE control state-
ment to specify the family device on which
the direct access permanent file is to reside.

The job must be of system origin or the user must be validated for system origin
] Y g
privileges.

60435400 J 1-8-5

Keyword Option

Description

It can be used in conjunction with the PN and
NA keywords on any permanent file control
statement (including DEFINE) to identify the
auxiliary device on which the permanent file
resides or is to reside. R is required only

if the desired device has a device type differ-
ent from that of the default device type and the
installation has defined the desired device as
removable. If PN and NA are specified but R
is not specified, the system default device type
is used. If the specified device type cannot be
recognized or does not exist inthe system,

the following message is issued to the user's
dayfile.

ILLEGAL DEVICE REQUEST, AT nnn.

NA The NA keyword can be used in two ways.

Normally, if the user attempts to access a
file that is interlocked or if an error occurs

in an attempt to process the file, the system
aborts the job. With the NA option, the user
can bypass a job abort and continue processing.
If Ifn is busy and the NA option is specified on
an ATTACH control statement, the system
automatically suspends the job until the file
becomes available. If NA is specified and an
error other than pfn BUSY occurs in process-
ing file 1fnj, the system issues the appropriate
error message to the user's dayfile and then
continues with file 1fnj+1. If the error oc-
curred on the last file specified on the state-
ment, the system continues with the next
statement.

If the user requests an auxiliary device that
is currently not available, the system aborts
his job. The NA keyword enables him to by-
pass this abort and direct the system to make
the desired device available.

ND The ND keyword prevents releasing of the files
assigned to the job upon processing of an OLD
control statement.

Several files can be accessed with one control statement. A slash (/) is used to separate
the files being accessed and the options described previously. The special options are

order-
specified on the control statement,

' 1-8-8

independent and are indicated by the keywords described. If special options are
they apply to all files that appear on the statement.

60435400 J

APPEND STATEMENT

The APPEND control statement allows the user to add supplementary information to an
existing indirect access file.

The control statement format is:
APPEND(pfn,].fnl, lfnz, v l_fnn/PW=passwrd, UN=usernum, PN=packname, R=r, NA)

pfn Name of the indirect access permanent file to which the local files
are to be appended.

1fn, Name(s) of local file(s) to be appended to pfn,

The logical structure of the two files is retained; that is, EORs and EOFs are appended
as well as data. If the file is appended to a file in an alternate user's catalog, a
password must be supplied if one is required.

ATTACH STATEMENT

The ATTACH control statement allows a user to access a direct access file,
The control statement format is:

A"I‘TACH(].fnl pfn;, ln,=pfn ,1fnn=pfnn/UN=usernum,PW=passwrd, M=m,
PN= packname R=r, NA)2

lfni Local file name given to the direct access file while it is
attached to the user's job. A working copy is not generated
since user access is made directly to the permanent file.
Thus, lfnj is used only when it is desirable to reference the
attached file by a name other than its permanent file name,
pfn.. The local file name is returned to the system if it is
already present when this statement is issued, even if an error
is encountered in processing the statement.

pfn.1 Name of direct access file to be attached. If pfni is omitted,
: the system assumes pfni=1fni.
m File or user permission mode, where m can be W, M, A, E,

R, RM, or RA. If m is omitted, the system assumes m is
R. This option must be specified by all users, including the
originator, if the file is to be modified or new information is
to be added to the file. If pfn, is attached in W mode, the
date is recorded as last modification date even if the file was
not altered.

A read/write interlock controls multiple access of a direct access file. The main pur-

pose of this interlock is to ensure that only one user at a time writes on the file;
however, it is possible for several users to read a file simultaneously.

60435400 J 1-8-17 '

Table 1-8-1 gives combinations of multiple access. The left column specifies the cur-
rent access status of the file, and the top row indicates the type of access a user is
requesting on an ATTACH statement with the M parameter. The entries in the table
are the access modes actually granted. The access a user is granted is contingent on
having been permitted that mode of access by the creator of the file.

TABLE 1-8-1, COMBINATIONS OF MULTIPLE ACCESS

Current
Access Access Requested
Free w M A R | RM RA | E

w Busy - Busy Busy Busy Busy Busy Busy
M Busy | Busy | Busy | Busy M/R | Busy Busy
A Busy | Busy | Busy | Busy A/R A/R Busy
R Busy Busy Busy R R R R
RM Busy M/R A/R R R R R
RA Busy | Busy A/R R R R R
E Busy Busy Busy R R R R

W, M, A, R, RM, RA, and E have the values described under the M= keyword.

Bfli"‘syt indicates the requested access is not allowed while the current access is in
effect. :

A/R is the access condition in which one user has attached the file in append
mode, and one or more other users have attached it in read mode.

M/R is the access condition in which one user has attached the file in modify
mode, and one or more other users have attached it in read mode.

If a file is to be accessed by alternate users, it should be returned as soon as possible.
If an auxiliary device has been previously specified by a PACKNAM statement, the

system attempts to attach pfni from the auxiliary device rather than the normal system
devices,

' 1-8-8 60435400 J

CATLIST STATEMENT

The CATLIST control statement lists information about the user's permanent files or those
permanent files he can access in the catalogs of alternate users.

The control statement format is:

CATLIST(LO=p, FN=pfn, UN=usernum, PN=packname, R=r, L=1fn, NA, DN=dn)

LO=p One of the following list options (default is 0):

F

FP

(zero)

Lists pertinent information about each file in the user's
catalog. The final two lines give the number of indirect
access files, the number of direct access flles, and the
total PRUs used by each type.

If an aliernate user number is specified (UN option),
the user obtains a listing of all files that he can access
in the alternate user's catalog, The password for files
in an alternate user's catalog is not included in the
listing, The password to files in an alternate user's
catalog must be obtained directly from that user.

Lists the permission information recorded for each
alternate user of a specified file in the user's catalog.
This option requires that a file name be specified (FN
option). If an alternate user number is specified (UN
option), only the permission information for that user
of the specified file is listed.

The user numbers listed include those that have been
granted explicit permission to the file (private file only)
and those that have accessed the file because of implicit
permission (semiprivate files only). T An asterisk (%)
follows the user number/permission mode if explicit
permission has been granted this user.

direct access files and the names of the direct access
files in the user's catalog. If an alternate user number
is specified (UN option), the user obtains only the names
of the files that he can access in the alternate user's
catalog., If no LO keyword is specified, the system
assumes this value.

Lists alphabetically by column the names of the in- l

An asterisk (*) preceding a file name indicates an error
status is set in the catalog entry for the file. The cause
of the error may be one of the following.
e EOI was altered during mass storage recovery. i
BOI/EOI verification error,
e Error in data and/or permit entries.

To clear an error status flag, refer to the CHANGE
statement in this section.

t User numbers are not recorded for accesses to public files.

60435400 J

1-8-9

1-8-10

FN=pfn

UN=usernum

PN=packname

P Selects a short list that indicates only the user numbers
of alternate users who have access to the specified pri-
vate or semiprivate file. This option requires that a
file name be specified (FN option).

Permanent file name. If pfn contains no asterisks, this option
requests catalog information only for the permanent file pfn.
This parameter is required when listing permit information
(the LO=FP and LO=P list options). If a short list option is
selected (LO=0 or LO=P), the message

pfn FOUND, AT nnn.
is issued if the file (or user number) is located. The message

pfn NOT FOUND, AT nnn.

_ is issued if the file (or user number) is not located.

If pin contains one or more asterisks, CATLIST lists catalog
information for the subset of files whose names contain the
same letters in the same positions as specified in pfn. For
example, FN=***OPL lists all 6-character file names ending
in OPL. FN=Ms**#¥xtk lists all files whose names start with the
letter M. The asterisk is invalid when listing permit informa-
tion with the LO=FP or LO=P list options.

User number. This parameter has two purposes.

e For LO=F and LO=0, Indicates the alternate catalog for
which the user desires catalog information,

o For LO=FP and LO=P, Indicates the permission informa-
tion recorded for the specified alternate user.

This parameter specifies an auxiliary device that containg
catalog information for all users with files on that device.

The PN keyword must be specified if the user wishes to obtain
the following information from his catalog on the specified
auxiliary device.

o Pertinent information about each file (LO=F).
e Only the name of each file (LO=0).

e Permission information for each alternate user that has
accessed a specific file (LO=FP).

e Only the user number of each alternate user that has
accessed a specific file (I.LO=P).

The PN parameter can also be specified to allow alternate

users to obtain a list of files they can access on the auxiliary
device, as well as pertinent information about each file.

60435400 J

R-=r Device type on which permanent file catalog resides. Used in
conjunction with the PN and NA parameters. Refer to R param-
eter description at beginning of this section.

L=lfn Output file name. This is the name of a local file to which the
CATLIST information is written. If this parameter is omitted,
the system assumes L=OUTPUT. If lfn exists and is positioned
at BOI, the contents of that file is purged before the CATLIST
information is written. However, if Ifn exists and is positioried
at EOI, the CATLIST information is appended to the file as a
new logical record.

NA No abort option. CATLIST continues processing if errors
are encountered during processing.

DN=dn Device number (0 through 77g). List file residing on specified
device number dn,

If no entries are present in the specified catalog, the message
EMPTY CATALOG.

is issued to the user's dayfile.

Example:

A user entered the following statement

A CATLIST.

and received the following listing of his permanenf files.

CATALOG OF USERNUM FM/FAMNAME T9/05/14. 10.37.26.

INDIRECT ACCESS FILE(S)

CONVER FJoB LFILE PROC12 PROC13 TESTA ZZZDUMP
DJOB FORT

DIRECT ACCESS FILE(S)

DATAB LIB5 TESTLIB TEST2
9 INDIRECT ACCESS FILE(S), TOTAL PRUS = 19.
4 DIRECT ACCESS FILE(S), TOUTAL PRUS = 4,

The heading gives the user number, the device family name, and the date and time. If
the PN=packname parameter was specified, the family name in the heading is replaced by
PN /packname,

CHANGE STATEMENT

The CHANGE control statement allows the creator of a direct or indirect access permanent
file to change one or more of its characteristics without assigning the file to his job. A
direct access file need not be attached and redefined; an indirect access file need not be
retrieved and replaced.

60435400 J 1-8-11 ®

The control statement format is:

CHANGE(nfn=ofn/CT=ct, M=m, PW=passwrd, SS=subsystem, PN =packname,R=r,NA, CE)

The full descriptions of the statement parameters are given at the beginning of this section.

nfn

ofn

CT=ct
M=m

PW=password

SS=subsystem

PN=packname

R=r

NA

CE

New permanent file name,

Old permanent file name.
ofn is specified.

If no name change is desired, only
New access category for the file (private, semiprivate, or public).
New alternate user permission mode.

New password. If PW=0 is specified, CHANGE clears the old
password without setting a new password.

New time-sharing subsystem to be associated with the file.

Auxiliary pack on which the file resides. This parameter cannot
specify a new file residence.
Device type on which the file resides.
specify a new file residence.

This parameter cannot
If the requested auxiliary pack is not available, the job is sus-
pended until the pack becomes available,

Clear file error code.
5 in volume 2.

For further information, refer to section

CHANGE also updates the last modification date and last access date for the file.

DEFINE STATEMENT

The DEFINE control statement allows the user to define direct access permanent files.

The control statement format is:

DEFINE(Ifny =pfny, Ifng =pfng, ..., 1fn, =pfn, /PW=passwrd, CT=ct, M=m, R=r,

S=space, PN=packname,NA)

The full descriptions of these parameters are given at the beginning of this section,

® 1-8-12

lfni
pfn;

PW=passwrd
CT=ct

If DEFINE creates an empty direct access permanent file, 1fn.
is specified only if the user desires to reference the file by a
name other than its permanent file name. If DEFINE defines an
existing local file as a direct access file, Ifn; is the name of the
local file. Also, -if 1fn; exists, its position is not altered.

Permanent file name. If pfnj is omitted, the system assumes
n;=pfnj.

Password required to access the defined file.

Access category of the defined file (private, semiprivate, or
publie).

60435400 J

M=m Alternate user permission mode. This does not affect the current
mode. After defining a file, the user is always in write mode.

R=r Type of device on which the permanent file is to reside. The
device must be a permanent file mass storage device on which
direct access files are allowed,

S=space Number of PRUs requested for the file.

PN=packnam Name of the auxiliary pack on which the direct access file is to
reside.

NA If the requested auxiliary pack is not available, the job is sus-

pended until the pack becomes available.

The user can either create an empty permanent file or define an existing local file as a
direct access file. If the user releases the file and wishes to access it at some time
in the future, the ATTACH control statement must be included.

If Un; does not exist, the device on which pfn; resides depends on the r and space
parameters.

r space Residency
Specified Not specified The file resides on the device of type r with
the most space available.

Specified Specified The file resides on the device of type r with
' the most space available, provided that
device has as many PRUs available as speci~
fied by the space parameter,

Not specified Specified The file resides on the device with the most
space available, provided that device has
as many PRUs available as specified by the
space parameter.

Not specified Not specified The file resides on the device with the mbst
space available.

If an auxiliary device has been previously specified by a PACKNAM statement, pfn; resides
on that auxiliary device rather than a system device.

If the optional parameters are omitted, the system assumes the following values.

Keyword Default
PW None
CT PRIVATE
M WRITE
PN None

60435400 J 1-8-13

If the S option is selected and no device has the specified amount of space available, the
request is aborted and the following message is issued to the user's dayfile.

PRUS REQUESTED NOT AVAILABLE, AT nnn.

Unused space is not guaranteed to be available if the user attempts to expand the file at a
later time,

If ifn; already exists on a device other than that specified by r, or an illegal device is spec-
ified, the system issues the following message to the user's dayfile.

DIRECT ACCESS DEVICE ERROR, AT nnn,

GET STATEMENT

The GET control statement enables the user to retrieve a copy of file pfni for use as a local
file. C

The control statement format is:

GET(]in1=pfn1, 1fn2=pfn2, cees]i‘nn=pfnn/ UN=usernum, PW=passwrd, PN=packname,

R=r,NA)
lfni Local file name given the file while in use.
pfni Permanent file name; if pfni is omitted, lfni=pfn.i._

If the request is made with no parameters specified, the user's primary file is assumed,

Each pfn specified must be an indirect access file. File Ifn; is returned to the system if it
is present before this command is issued even if an error is encountered in processing the
command. The new file is rewound. No interlock is provided to prevent other users from
obtaining working copies of the same file simultaneously. If the name of the user's current
primary file is specified as an 1fn, the corresponding pfn is made the new primary file

and any subsystem associated with it becomes the user's new current time-sharing sub-
system (refer to the IAF Reference Manual or the Time-Sharing User's Reference Manual),

If the request is for a file in another user's catalog (UN option specified), the permission
mode must allow the user to read the file.

If an auxiliary device has been previously specified by a PACKNAM statement, the system

attempts to retrieve the copy of pfni from the auxiliary device rather than the normal
system devices,

OLD STATEMENT

The OLD control statement retrieves a copy of a permanent file and makes it the primary
file,

The control statement format is:
OLD{lin=pia/ UN=usernum, PW=passwrd, PN=packname, R=r,NA, ND)

fn Local file name given the file while in use,
pfn Permanent file name, If pfn is omitted, lfn=pfn.

1-8-14 60435400 J

The OLD statement performs the same-operation as the GET statement and additionally
makes lfn the primary file. Any currently existing primary file is released. All -
FYiles assigned to the job are released unless the ND parameter is specified.

If an auxiliary device has been specified previously by a PACKNAM statement, the
system attempts to retrieve the copy of pfn from the auxiliary device rather than the
normal system devices. ‘

Refer to the note in PRIMARY Statement. in section 7 for use of